UA-45667900-1

Thursday 22 September 2016

More on Treatable ID Masquerading as Autism



I did write a post a while back highlighting an excellent on line resource that gives clinicians data on 81 treatable forms of Intellectual Disability, ID (formerly known as mental retardation, MR).





There is a big overlap between the causes of some ID and causes of some autism.

If you have a case of autism, it is worth reviewing the 81 treatable forms of ID, just in case you have one, even a mild version causing minimal ID.  Partial dysfunctions certainly are possible, as we saw with biotin. 

It is also very interesting to look through the therapies used and see how they overlap with those used by people in their n=1 case of autism.

For example the therapy for SLOS (Smith–Lemli–Opitz syndrome) which is related to very low cholesterol is to give cholesterol and Simvastatin.  Simvastatin is widely used in older people to LOWER cholesterol.  Statins have several other known modes of action. We use Atorvastatin.

Note all the vitamin related syndromes etc.

The data is all on the online resource that is highlighted at the top of every page in this blog, but as one regular reader from Hong Kong pointed out, it is better to actually read it in table form.  

He recommended the two papers below.  I reproduced some of the tables, but I suggest you click the link to read the papers. 

The formatting is not so good, since I have cut and paste from the papers.

You have the syndromes, their therapies and their diagnostic tests.

Complicated questions should be addressed to the authors of the papers or your doctor.







Table 2Overview of all 81 treatable IDs.In this table, the IEMs are grouped according to the biochemical phenotype as presented in standard textbooks, and alphabetically. Of note, primary CoQ deficiency was considered as one single IEM even though more though 6 genes have been described; this is true as well for MELAS and Pyruvate Dehydrogenase Complex deficiency.
Biochemical category
Disease name
OMIM#
Biochemical deficiency
Gene(s)
Amino acids
HHH syndrome (hyperornithinemia, hyperammonemia, homocitrullinemia)
238970
Ornithine translocase
SLC25A15 (AR)
l.o. Non-ketotic hyperglycinemia
605899
Aminomethyltransferase/glycine decarboxylase/glycine cleavage system H protein
AMT/GLDC/GCSH (AR)
Phenylketonuria
261600
Phenylalanine hydroxylase
PAH (AR)
PHGDH deficiency(Serine deficiency)
601815
Phosphoglycerate dehydrogenase
PHGDH (AR)
PSAT deficiency(Serine deficiency)
610992
Phosphoserine aminotransferase
PSAT1 (AR)
PSPH deficiency(Serine deficiency)
614023
Phosphoserine phosphatase
PSPH (AR)
Tyrosinemia type II
276600
Cytosolic tyrosine aminotransferase
TAT (AR)
Cholesterol & bile acids
Cerebrotendinous xanthomatosis
213700
Sterol-27-hydroxylase
CYP27A1 (AR)
Smith–Lemli–Opitz Syndrome
270400
7-Dehydroxycholesterol reductase
DHCR7 (AR)
Creatine
AGAT deficiency
612718
Arginine: glycine amidinotransferase
GATM (AR)
Creatine transporter Defect
300352
Creatine transporter
SLC6A8 (X-linked)
GAMT deficiency
612736
Guanidino-acetate-N-methyltransferase
GAMT (AR)
Fatty aldehydes
Sjögren–Larsson syndrome
270200
Fatty aldehyde dehydrogenase
ALDH3A2 (AR)
Glucose transport & regulation
GLUT1 deficiency syndrome
606777
Glucose transporter blood–brain barrier
SLC2A1 (AR)
Hyperinsulinism hyperammonemia syndrome
606762
Glutamate dehydrogenase superactivity
GLUD1 (AR)
Hyperhomocysteinemia
Cobalamin C deficiency
277400
Methylmalonyl-CoA mutase and homocysteine : methyltetrahydrofolate methyltransferase
MMACHC (AR)
Cobalamin D deficiency
277410
C2ORF25 protein
MMADHC (AR)
Cobalamin E deficiency
236270
Methionine synthase reductase
MTRR (AR)
Cobalamin F deficiency
277380
Lysosomal cobalamin exporter
LMBRD1 (AR)
Cobalamin G deficiency
250940
5-Methyltetrahydrofolate-homocysteine S-methyltransferase
MTR (AR)
Homocystinuria
236200
Cystathatione β-synthase
CBS (AR)
l.o. MTHFR deficiency
236250
Methylenetetrahydrofolate reductase deficiency
MTHFR (AR)
Lysosomes
α-Mannosidosis
248500
α-Mannosidase
MAN2B1 (AR)
Aspartylglucosaminuria
208400
Aspartylglucosaminidase
AGA (AR)
Gaucher disease type III
231000
ß-Glucosidase
GBA (AR)
Hunter syndrome (MPS II)
309900
Iduronate-2-sulfatase
IDS (X-linked)
Hurler syndrome (MPS I)
607014
α-L-iduronidase
IDUA (AR)
l.o. Metachromatic leukodystrophy
250100
Arylsulfatase A
ARSA (AR)
Niemann–Pick disease type C
257220
Intracellular transport cholesterol & sphingosines
NPC1 NPC2 (AR)
Sanfilippo syndrome A (MPS IIIa)
252900
Heparan-N-sulfatase
SGSH (AR)
Sanfilippo syndrome B (MPS IIIb)
252920
N-acetyl-glucosaminidase
NAGLU (AR)
Sanfilippo syndrome C (MPS IIIc)
252930
Acetyl-CoA glucosamine-N-acetyl transferase
HGSNAT (AR)
Sanfilippo syndrome D (MPS IIId)
252940
N-acetyl-glucosamine-6-Sulfatase
GNS (AR)
Sly syndrome (MPS VII)
253220
β-glucuronidase
GUSB (AR)
Metals
Aceruloplasminemia
604290
Ceruloplasmin (iron homeostasis)
CP (AR)
Menkes disease/Occipital horn syndrome
304150
Copper transport protein (efflux from cell)
ATP7A (AR)
Wilson disease
277900
Copper transport protein (liver to bile)
ATP7B (AR)
Mitochondria
Co enzyme Q10 deficiency
607426
Coenzyme Q2 or mitochondrial parahydroxybenzoate-polyprenyltransferase; aprataxin; prenyl diphosphate synthase subunit 1; prenyl diphosphate synthase subunit 2; coenzyme Q8; coenzyme Q9
COQ2, APTX, PDSS1, PDSS2, CABC1, COQ9 (most AR)
MELAS
540000
Mitochondrial energy deficiency
MTTL1MTTQ,MTTHMTTK,MTTCMTTS1,MTND1MTND5,MTND6MTTS2 (Mt)
PDH complex deficiency
OMIM# according to each enzyme subunit deficiency: 312170; 245348; 245349
Pyruvate dehydrogenase complex (E1α, E2, E3)
PDHA1 (X-linked), DLAT (AR), PDHX (AR)
Neurotransmission
DHPR deficiency (biopterin deficiency)
261630
Dihydropteridine reductase
QDPR (AR)
GTPCH1 deficiency (biopterin deficiency)
233910
GTP cyclohydrolase
GCH1 (AR)
PCD deficiency (biopterin deficiency)
264070
Pterin-4α-carbinolamine dehydratase
PCBD1 (AR)
PTPS deficiency (biopterin deficiency)
261640
6-Pyruvoyltetrahydropterin synthase
PTS (AR)
SPR deficiency (biopterin deficiency)
612716
Sepiapterin reductase
SPR (AR)
SSADH deficiency
271980
Succinic semialdehyde dehydrogenase
ALDH5A1 (AR)
Tyrosine Hydroxylase Deficiency
605407
Tyrosine Hydroxylase
TH (AR)
Organic acids
3-Methylcrotonyl glycinuria
GENE OMIM # 210200; 210210
3-Methylcrotonyl CoA carboxylase (3-MCC)
MCC1/MCC2 (AR)
3-Methylglutaconic aciduria type I
250950
3-Methylglutaconyl-CoA hydratase
AUH (AR)
β-Ketothiolase deficiency
203750
Mitochondrial acetoacetyl-CoA thiolase
ACAT1 (AR)
Cobalamin A deficiency
251100
MMAA protein
MMAA (AR)
Cobalamin B deficiency
251110
Cob(I)alamin adenosyltransferase
MMAB (AR)
Ethylmalonic encephalopathy
602473
Mitochondrial sulfur dioxygenase
ETHE1 (AR)
l.o. Glutaric acidemia I
231670
Glutaryl-CoA dehydrogenase
GCDH (AR)
Glutaric acidemia II
231680
Multiple acyl-CoA dehydrogenase
ETFAETFB,ETFDH (AR)
HMG-CoA lyase deficiency
246450
3-Hydroxy-3-methylglutaryl-CoA lyase
HMGCL (AR)
l.o. Isovaleric acidemia
243500
Isovaleryl-CoA dehydrogenase
IVD (AR)
Maple syrup urine disease (variant)
248600
Branched-chain 2-ketoacid complex
BCKDHA/BCKDHB/ DBT (AR)
l.o. Methylmalonic acidemia
251000
Methylmalonyl-CoA mutase
MUT (AR)
MHBD deficiency
300438
2-Methyl-3-hydroxybutyryl-CoA dehydrogenase
HSD17B10 (X-linked recessive)
mHMG-CoA synthase deficiency
605911
Mitochondrial 3-hydroxy-3-Methylglutaryl-CoA synthase
HMGCS2 (AR)
l.o. Propionic acidemia
606054
Propionyl-CoA carboxylase
PCCA/PCCB (AR)
SCOT deficiency
245050
Succinyl-CoA 3-oxoacid CoA transferase
OXCT1 (AR)
Peroxisomes
X-linked adrenoleukodystrophy
300100
Peroxisomal transport membrane protein ALDP
ABCD1 (X-linked)
Pyrimidines
Pyrimidine 5-nucleotidase superactivity
GENE OMIM # 606224
Pyrimidine-5-nucleotidase Superactivity
NT5C3 (AR)
Urea cycle
l.o. Argininemia
207800
Arginase
ARG1 (AR)
l.o. Argininosuccinic aciduria
207900
Argininosuccinate lyase
ASL (AR)
l.o. Citrullinemia
215700
Argininosuccinate Synthetase
ASS1 (AR)
Citrullinemia type II
605814
Citrin (aspartate–glutamate carrier)
SLC25A13
l.o. CPS deficiency
237300
Carbamoyl phosphate synthetase
CPS1 (AR)
l.o. NAGS deficiency
237310
N-acetylglutamate synthetase
NAGS (AR)
l.o. OTC Deficiency
311250
Ornithine transcarbamoylase
OTC (X-linked)
Vitamins/co-factors
Biotinidase deficiency
253260
Biotinidase
BTD (AR)
Biotin responsive basal ganglia disease
607483
Biotin transport
SLC19A3(AR)
Cerebral folate receptor-α deficiency
613068
a.o. Cerebral folate transporter
FOLR1 (AR)
Congenital intrinsic factor deficiency
261000
Intrinsic factor deficiency
GIF (AR)
Holocarboxylase synthetase deficiency
253270
Holocarboxylase synthetase
HLCS (AR)
Imerslund Gräsbeck syndrome
261100
IF-Cbl receptor defects (cubulin/amnionless)
CUBN & AMN (AR)
Molybdenum co-factor deficiency type A
252150
Sulfite oxidase & xanthine dehydrogenase & aldehyde oxidase
MOCS1MOCS2,(AR)
Pyridoxine dependent epilepsy
266100
Pyridoxine phosphate oxidase
ALDH7A1 (AR),
Thiamine responsive encephalopathy
606152
Thiamine transport
SLC19A3 (AR)


Table 5Overview of all causal therapies (n=91).This Table provides an overview of the specific therapy/-ies available for each IEM with relevant level(s) of evidence, therapeutic effect(s) on primary and/or secondary outcomes and use in clinical practice. For 10 IEMs, two therapies are available; these are listed separately (in brackets).
Disease name
Therapeutic modality (−ies)
Level of evidence
Clinical practice
Treatment effect
Literature references
Aceruloplasminemia
Iron chelation
4
Standard of care
D,E
(X-linked)adrenoleukodystrophy
Stemcell transplantation (Gene therapy)
1c (5)
Individual basis (Individual basis)
D,E (D,E)
AGAT deficiency
Creatine supplements
4
Standard of care
A,D
α-Mannosidosis
Haematopoietic stem cell transplantation
4-5
Individual basis
D
[54
l.o. Argininemia
Dietary protein restriction, arginine supplement, sodium benzoate, phenylbutyrate (Liver transplantation)
2b (4)
Standard of care (Individual basis)
B,C,D,E,F,G (C)
l.o. Argininosuccinic aciduria
Dietary protein restriction, arginine supplement, sodium benzoate, phenylbutyrate (liver transplantation)
2b (4)
Standard of care (individual basis)
B,C,D,E,F,G (C)
Aspartylglucosaminuria
Haematopoietic stem cell transplantation
4-5
Individual basis
D
[62
β-Ketothiolase deficiency
Avoid fasting, sickday management, protein restriction
5
Standard of care
C
Biotin responsive basal ganglia disease
Biotin supplement
4
Standard of care
A,E
[66
Biotinidase deficiency
Biotin supplement
2c
Standard of care
A,E,G
[67
Cerebral folate receptor-α deficiency
Folinic acid
4
Standard of care
A,D,E,F
[[68], [69]]
Cerebrotendinous xanthomatosis
Chenodesoxycholic acid, HMG reductase inhibitor
4
Standard of care
B,D,E,G
l.o. Citrullinemia
Dietary protein restriction, arginine supplement, sodium benzoate, phenylbutyrate (Liver transplantation)
2b (4)
Standard of care (Individual basis)
B,C,D,E,F,G (C)
Citrullinemia type II
Dietary protein restriction, arginine supplement, sodium benzoate, phenylbutyrate (Liver transplantation)
2b (4)
Standard of care (Individual basis)
B,C,D,E,F,G (C)
Co enzyme Q10 deficiency
CoQ supplements
4
Standard of care
E,F
[[74], [75]]
Cobalamin A deficiency
Hydroxycobalamin, protein restriction
4
Standard of care
C,G
Cobalamin B deficiency
Hydroxycobalamin, protein restriction
4
Standard of care
C,G
Cobalamin C deficiency
Hydroxycobalamin
4
Standard of care
C,D,G
Cobalamin D deficiency
Hydroxy-/cyanocobalamin
4
Standard of care
C,D,G
Cobalamin E deficiency
Hydroxy-/methylcobalamin, betaine
4
Standard of care
C,D,G
Cobalamin F deficiency
Hydroxycobalamin
4
Standard of care
C,D,G
Cobalamin G deficiency
Hydroxy-/methylcobalamin, betaine
4
Standard of care
C,D,G
Congenital intrinsic factor deficiency
Hydroxycobalamin
4
Standard of care
A,E,G
[80
l.o. CPS deficiency
Dietary protein restriction, arginine supplement, sodium benzoate, phenylbutyrate (Liver transplantation)
2b & 4
Standard of care (Individual basis)
B,C,D,E,F,G (C)
Creatine transporter defect
Creatine, glycine, arginine supplements
4-5
Individual basis
F
[29
DHPR deficiency
BH4,diet, amine replacement, folinic acid
4
Standard of care
A,E
[52
Ethylmalonic encephalopathy
N-acetylcysteine, oral metronidazol
4
Standard of care
E,G
[81
GAMT deficiency
Arginine restriction, creatine & ornithine supplements
4
Standard of care
B,D,E,F
Gaucher disease type III
Haematopoietic stem cell transplantation
4–5
Individual basis
D,G
[[84], [85]]
GLUT1 deficiency syndrome
Ketogenic diet
4
Standard of Care
F
[[19], [86]]
l.o. Glutaric acidemia I
Lysine restriction, carnitine supplements
2c
Standard of care
C,D,E,G
[[87], [88]]
Glutaric acidemia II
Carnitine, riboflavin, β-hydroxybutyrate supplements; sick day management
5
Standard of care
C,G
[[89], [90]]
GTPCH1 deficiency
BH4, amine replacement
4
Standard of care
A,E
[91
HHH syndrome
Dietary protein restriction, ornithine supplement, sodium benzoate, phenylacetate
4
Standard of care
B,C,D,E,F,G
[92
HMG-CoA lyase deficiency
Protein restriction, avoid fasting, sick day management,
5
Standard of care
C
Holocarboxylase synthetase deficiency
Biotin supplement
4
Standard of care
A,E,G
[[94], [95]]
Homocystinuria
Methionine restriction, +/−pyridoxine, +/−betaine
2c
Standard of care
C,D,G
[[96], [76]]
Hunter syndrome (MPS II)
Haematopoietic stem cell transplantation
4–5
Individual basis
D,G
Hurler syndrome (MPS I)
Haematopoietic stem cell transplantation
1c
Standard of care
D,G
Hyperammonemia–Hyperinsulinism syndrome
Diazoxide
4–5
Standard of care
D
[[98], [99]]
Imerslund Gräsbeck syndrome
Hydroxycobalamin
4
Standard of Care
A,E,G
[100
l.o. Isovaleric acidemia
Dietary protein restriction, carnitine supplements, avoid fasting, sick day management
2c
Standard of care
C,G
l.o. NAGS deficiency
Dietary protein restriction, arginine supplement, sodium benzoate, phenylbutyrate (Liver transplantation)
2b & 4
Standard of care (Individual basis)
B,C,D,E,F,G (C)
l.o. Non-ketotic hyperglycinemia
Glycine restriction; +/−sodium benzoate, NMDA receptor antagonists, other neuromodulating agents
4-5
Standard of Care
B,D,E,F
[106
Maple syrup urine disease (variant)
Dietary restriction branched amino-acids, avoid fasting, (Liver transplantation)
4 & 4
Standard of care (Individual basis)
B,C,D (A,C)
MELAS
Arginine supplements
4–5
Standard of Care
C,D,E,F
[26
Menkes disease occipital horn syndrome
Copper histidine
4
Individual basis
D
l.o. Metachromatic leukodystrophy
Haematopoietic stem cell transplantation
4-5
Individual basis
D
[[114], [85]]
3-Methylcrotonyl glycinuria
Dietary protein restriction; carnitine, glycine, biotin supplements; avoid fasting; sick day management
5
Standard of care
C
3-Methylglutaconic aciduria type I
Carnitine Supplements, Avoid Fasting, Sick Day Management
5
Standard of care
C
[117
l.o. Methylmalonic acidemia
Dietary protein restriction, carnitine supplements, avoid fasting, sick day management
2c
Standard of care
C,G
MHBD deficiency
Avoid fasting, sick day management, isoleucine restricted diet
5
Standard of care
C
mHMG-CoA synthase deficiency
Avoid fasting,sick day management, +/−dietary precursor restriction
5
Standard of care
C
Molybdenum co-factor deficiency type A
Precursor Z/cPMP
4
Individual basis
A,F
[25
l.o. MTHFR deficiency
Betaine supplements, +/−folate, carnitine, methionine supplements
4
Standard of care
C,D,G
[[76], [79]]
Niemann–Pick disease type C
Miglustat
1b
Standard of care
D,E
l.o. OTC deficiency
Dietary protein restriction, citrulline supplements, Sodium benzoate/phenylbutyrate (Liver transplantation)
2b & 4
Standard of care (Individual basis)
B,C,D,E,F,G (C)
PCD deficiency
BH4
4
Standard of care
A,E
[91
PDH complex deficiency
Ketogenic diet & thiamine
4
Individual basis
D,E,F
[122
Phenylketonuria
Dietary phenylalanine restriction +/−amino-acid supplements (BH(4) supplement)
2a (4)
Standard of care (Individual basis)
B, D, E (C)
PHGDH deficiency
L-serine & +/−glycine supplements
4
Standard of care
D,F
PSAT deficiency
L-serine & +/−glycine supplements
4
Standard of care
D,F
l.o. Propionic acidemia
Dietary protein restriction, carnitine supplements, avoid fasting, sick day management
2c
Standard of care
C,G
PSPH deficiency
L-serine & +/−glycine supplements
4
Standard of care
D,F
PTPS deficiency
BH4, diet, amine replacement
4
Standard of care
A,E
[91
Pyridoxine dependent epilepsy
Pyridoxine
4
Standard of care
A,F
Pyrimidine 5-nucleotidase superactivity
Uridine supplements
1b
Standard of care
A,B,F,G
[129
Sanfilippo syndrome A (MPS IIIa)
Haematopoietic stem cell transplantation
4–5
Individual basis
D
Sanfilippo syndrome B (MPS IIIb)
Haematopoietic stem cell transplantation
4–5
Individual basis
D
Sanfilippo syndrome C (MPS IIIc)
Haematopoietic Stemcell Transplantation
4–5
Individual Basis
D
Sanfilippo syndrome D (MPS IIId)
Haematopoietic stem cell transplantation
4–5
Individual basis
D
SCOT deficiency
Avoid fasting, protein restriction, sick day management
5
Standard of care
C
[65
Sjögren–Larsson syndrome
Diet: low fat, medium chain & essential fatty acid supplements & Zileuton
5
Individual basis
D,G
Sly syndrome (MPS VII)
Haematopoietic stem cell transplantation
4-5
Individual basis
D
Smith–Lemli–Opitz syndrome
Cholesterol & simvastatin
4–5
Individual basis
B,D
SPR deficiency
Amine replacement
4
Standard of care
A,E
[134
SSADH deficiency
Vigabatrin
4
Individual basis
B,F
[135
Thiamine-responsive encephalopathy
Thiamin supplement
4-5
Standard of care
E
Tyrosine hydroxylase deficiency
L-dopa substitution
4
Standard of care
A,E
[138
Tyrosinemia type II
Dietary phenylalanine & tyrosine restriction
4-5
Standard of care
D,G
Wilson disease
Zinc & tetrathiomolybdate
1b
Standard of care
E,G









Table 2aOverview of the first tier metabolic screening tests denoting all diseases (with OMIM# and gene(s)) potentially identified per individual test.
Diagnostic test
Disease
OMIM#
Gene
Blood tests
Plasma amino acids
l.o. Argininemia
ARG1 (AR)
Plasma amino acids
l.o. Argininosuccinic aciduria
ASL (AR)
Plasma amino acids
l.o. Citrullinemia
ASS1 (AR)
Plasma amino acids
Citrullinemia type II
SLC25A13 (AR)
Plasma amino acids
l.o. CPS deficiency
CPS1 (AR)
Plasma amino acids
HHH syndrome (hyperornithinemia, hyperammonemia, homocitrullinuria)
SLC25A15 (AR)
Plasma amino acids
Maple syrup urine disease (variant)
BCKDHA/BCKDHB/DBT(AR)
Plasma amino acids
l.o. NAGS deficiency
NAGS (AR)
Plasma amino acids (& UOA incl orotic acid)
l.o. OTC deficiency
OTC (X-linked)
Plasma amino acids
Phenylketonuria
PAH (AR)
Plasma amino acids (& UOA)
Tyrosinemia type II
TAT (AR)
Plasma amino acids (tHcy)
l.o. MTHFR deficiency
MTHFR (AR)
Plasma total homocysteine
Cobalamin E deficiency
MTRR (AR)
Plasma total homocysteine
Cobalamin G deficiency
MTR (AR)
Plasma total homocysteine (& UOA)
Cobalamin F deficiency
LMBRD1 (AR)
Plasma total homocysteine (& OUA)
Cobalamin C deficiency
MMACHC (AR)
Plasma total homocysteine (& OUA)
Homocystinuria
CBS (AR)
Plasma total homocysteine (& PAA)
l.o. MTHFR deficiency
MTHFR (AR)
Plasma total homocysteine (& UOA)
Cobalamin D deficiency
MMADHC (AR)
Serum ceruloplasmin & copper (& serum iron & ferritin)
Aceruloplasminemia
CP (AR)
Serum copper & ceruloplasmin (& urine copper)
MEDNIK diseases
AP1S1 (AR)
Serum copper & ceruloplasmin (urine deoxypyridonoline)
Menkes disease/occipital horn syndrome
ATP7A (AR)
Serum copper & ceruloplasmin (& urine copper)
Wilson disease
ATP7B (AR)
Urine tests
Urine creatine metabolites
AGAT deficiency
GATM (AR)
Urine creatine metabolites
Creatine transporter defect
SLC6A8 (X-linked)
Urine creatine metabolites
GAMT deficiency
GAMT (AR)
Urine glycosaminoglycans
Hunter syndrome (MPS II)
IDS (X-linked)
Urine glycosaminoglycans
Hurler syndrome (MPS I)
IDUA (AR)
Urine glycosaminoglycans
Sanfilippo syndrome A (MPS IIIa)
SGSH (AR)
Urine glycosaminoglycans
Sanfilippo syndrome B (MPS IIIb)
NAGLU (AR)
Urine glycosaminoglycans
Sanfilippo syndrome C (MPS IIIc)
HGSNAT (AR)
Urine glycosaminoglycans
Sanfilippo syndrome D (MPS IIId)
GNS (AR)
Urine glycosaminoglycans
Sly syndrome (MPS VII)
GUSB (AR)
Urine oligosaccharides
α-Mannosidosis
MAN2B1 (AR)
Urine oligosaccharides
Aspartylglucosaminuria
AGA (AR)
Urine organic acids
β-Ketothiolase deficiency
ACAT1 (AR)
Urine organic acids
Cobalamin A deficiency
MMAA (AR)
Urine organic acids
Cobalamin B deficiency
MMAB (AR)
Urine organic acids
l.o. Glutaric acidemia I
GCDH (AR)
Urine organic acids
Glutaric acidemia II
ETFA, ETFB, ETFDH(AR)
Urine organic acids
HMG-CoA lyase deficiency
HMGCL (AR)
Urine organic acids
Holocarboxylase synthetase deficiency
HLCS (AR)
Urine organic acids
3-Methylglutaconic aciduria type I
AUH (AR)
Urine organic acids
MHBD deficiency
HSD17B10 (X-linked recessive)
Urine organic acids
mHMG-CoA synthase deficiency
HMGCS2 (AR)
Urine organic acids
SCOT deficiency
OXCT1 (AR)
Urine organic acids
SSADH deficiency
ALDH5A1 (AR)
Urine organic acids (& ACP)
Ethylmalonic encephalopathy
ETHE1 (AR)
Urine organic acids (& ACP)
l.o. Isovaleric acidemia
IVD (AR)
Urine organic acids (& ACP)
3-Methylcrotonylglycinuria
MCC1/MCC2 (AR)
Urine organic acids (& ACP)
l.o. Methylmalonic acidemia
MUT (AR)
Urine organic acids (& tHcy)
Cobalamin C deficiency
MMACHC (AR)
Urine organic acids (& tHcy)
Cobalamin D deficiency
MMADHC (AR)
Urine organic acids (& tHcy)
Homocystinuria
CBS (AR)
Urine organic acids incl orotic acid (& PAA)
l.o. OTC deficiency
OTC (X-linked)
Urine organic acids (& PAA)
Tyrosinemia type II
TAT (AR)
Urine organic acids (& ACP)
l.o. Propionic acidemia
PCCA/PCCB (AR)
Urine organic acids (tHcy)
Cobalamin F deficiency
LMBRD1 (AR)
Urine purines & pyrimidines
Lesch–Nyhan syndrome
HPRT (AR)
Urine purines & pyrimidines
Molybdenum cofactor deficiency type A
MOCS1, MOCS2, (AR)
Urine purines & pyrimidines
Pyrimidine 5-nucleotidase superactivity
NT5C3 (AR)


Table 2bOverview of all diseases (in alphabetical order) requiring second tier biochemical testing, i.e. a specific test per disease approach; for each disease the OMIM# and gene(s) are listed.
Disease
OMIM#
Gene(s)
Diagnostic test
(X-linked) Adrenoleukodystrophy
ABCD1 (X-linked)
Plasma very long chain fatty acids
Biotin responsive basal ganglia disease
SLC19A3 (AR)
Gene analysis
Biotinidase deficiency
BTD (AR)
Biotinidase enzyme activity
Cerebral folate receptor-α deficiency
FOLR1 (AR)
CSF 5′-methyltetrahydrofolate
Cerebrotendinous xanthomatosis
CYP27A1 (AR)
Plasma cholestanol
Co-enzyme Q10 deficiency
COQ2, APTX, PDSS1,PDSS2, CABC1, COQ9(most AR)
Co-enzyme Q (fibroblasts) & gene analysis
Congenital intrinsic factor deficiency
GIF (AR)
Plasma vitamin B12 & folate
Dihydrofolate reductase deficiency
DHFR (AR)
CSF 5′-methyltetrahydrofolate
DHPR deficiency (biopterin deficiency)
QDPR (AR)
CSF neurotransmitters & biopterin loading test
Gaucher disease type III
GBA (AR)
Glucocerebrosidase enzyme activity (lymphocytes)
GLUT1 deficiency syndrome
SLC2A1 (AR)
CSF: plasma glucose ratio
GTPCH1 deficiency
GCH1 (AR)
CSF neurotransmitters & biopterin loading test
Hypermanganesemia with dystonia, polycythemia, and cirrhosis (HMDPC)
SLC30A10
Whole blood manganese
Hyperinsulinism hyperammonemia syndrome
GLUD1 (AR)
Gene analysis (& ammonia, glucose, insulin)
Imerslund Gräsbeck syndrome
CUBN & AMN (AR)
Plasma vitamin B12 & folate
MELAS
MTTL1, MTTQ, MTTH,MTTK, MTTC, MTTS1,MTND1, MTND5, MTND6,MTTS2 (Mt)
Mitochondrial DNA mutation testing
l.o. Metachromatic leukodystrophy
ARSA (AR)
Arylsulfatase-α enzyme activity
Niemann–Pick disease type C
NPC1 NPC2 (AR)
Filipin staining test (fibroblasts) & gene analyses
l.o. Non-ketotic hyperglycinemia
AMT/GLDC/GCSH (AR)
CSF amino acids (& PAA)
PCBD deficiency (biopterin deficiency)
PCBD1 (AR)
CSF neurotransmitters & biopterin loading test
PDH complex deficiency
OMIM# according to each enzyme subunit deficiency: 312170;245348; 245349
PDHA1 (X-linked), DLAT(AR), PDHX (AR)
Serum & CSF lactate:pyruvate ratio enzyme activity, gene analysis
PHGDH deficiency (serine deficiency)
PHGDH (AR)
CSF amino acids (& PAA)
PSAT deficiency (serine deficiency)
PSAT1 (AR)
CSF amino acids (& PAA)
PSPH deficiency (serine deficiency)
PSPH (AR)
CSF amino acids (& PAA)
PTS deficiency (biopterin deficiency)
PTS (AR)
CSF neurotransmitters & biopterin loading test
Pyridoxine dependent epilepsy
ALDH7A1 (AR)
Urine α-aminoadipic semialdehyde & plasma pipecolic acid
Sjögren Larsson syndrome
ALDH3A2 (AR)
Fatty aldehyde dehydrogenase enzyme activity
Smith Lemli Opitz syndrome
DHCR7 (AR)
Plasma 7-dehydrocholesterol:cholesterol ratio
SPR deficiency (biopterin deficiency)
SPR (AR)
CSF neurotransmitters, biopterin & Phe loading test (enzyme activity, gene analysis)
Thiamine responsive encephalopathy
SLC19A3 (AR)
Gene analysis
Tyrosine hydroxylase deficiency
TH (AR)
CSF neurotransmitters, gene analysis
VMAT2 deficiency
SLC18A2 (AR)
Urine mono-amine metabolites









Thursday 15 September 2016

Improvement in core ASD symptoms after long-term treatment with probiotics




Another brief post today to draw your attention to a paper highlighted on the Questioning Answers blog.

There are two virtually identically probiotics one called VSL#3 and the other called Viviomixx.  As pointed out in a recent post there is an ongoing clinical trial of Vivomixx.

  

Ongoing Clinical Trial of Vivomixx Probiotic in Children with Autism




Some readers of this blog are trialing VSL#3 or Viviomixx.

The new paper is a case study of a 12 year old boy with severe autism who was given VSL#3 at his residential care home.

He has celiac disease, but his doctors were surprised that when the reduction in severity of abdominal symptoms was accompanied by an improvement in his autism.

This should not come as a surprise to regular readers.  Just recall Kanner’s subject #1, Donald Triplett, who was later diagnosed with juvenile arthritis. When his arthritis was treated his autism improved.  This is exactly what should be expected.

Treat your comorbidities, particularly those of an inflammatory/auto immune nature, and very likely you will improve behavior and even cognition.





Abstract

Objectives: Autism spectrum disorder is a neurodevelopmental condition that typically displays socio-communicative impairment as well as restricted stereotyped interests and activities, in which gastrointestinal disturbances are commonly reported. We report the case of a boy with Autism Spectrum Disorder (ASD) diagnosis, severe cognitive disability and celiac disease in which an unexpected improvement of autistic core symptoms was observed after four months of probiotic treatment.
Method: The case study refers to a 12 years old boy with ASD and severe cognitive disability attending the Villa Santa Maria Institute in resident care since 2009. Diagnosis of ASDs according to DSM-V criteria was confirmed by ADOS-2 assessment (Autism Diagnostic Observation Schedule).
The medication used was VSL#3, a multi-strain mixture of ten probiotics. The treatment lasted 4 weeks followed by a four month follow-up.
The rehabilitation program and the diet was maintained stable in the treatment period and in the follow up. ADOS-2 was assessed six times: two times before starting treatment; two times during the treatment and two times after interruption of the treatment.
Results: The probiotic treatment reduced the severity of abdominal symptoms as expected but an improvement in Autistic core symptoms was unexpectedly clinically evident already after few weeks from probiotic treatment start. The score of Social Affect domain of ADOS improved changing from 20 to 18 after two month’s treatment with a further reduction of 1 point in the following two months. The level 17 of severity remained stable in the follow up period. It is well known that ADOS score does not fluctuate spontaneously along time in ASD and is absolutely stable.
Conclusions: The appropriate use of probiotics deserves further research, which hopefully will open new avenues in the fight against ASD.








Tuesday 13 September 2016

Tackling autism, child by child







Today’s post is to highlight an unusually well informed article about autism, pointed out to me by our reader Natasa.  

It is about how autism is treated by Dr Richard Frye at Arkansas Children's Hospital.  If you read the article, you may wonder why your pediatrician is unaware of these methods.


Click the link below to read the article.










Tuesday 6 September 2016

Histamine Reaction to Bio Gaia Gastrus



Alli from Switzerland discovered the autism benefits of Bio Gaia Gastrus.

This probiotic contains two different bacteria:-

·        Lactobacillus reuteri 17938 (Lactobacillus reuteri Protectis)

 ·        Lactobacillus reuteri ATCC PTA 6475


These two bacteria have different effects.

The first bacteria is very well researched and recently was shown to increase oxytocin in autism mouse studies.  It is available on its own and this is the product most people I know are using.

The second bacteria is included in Bio Gaia Gastrus specifically for its additional anti-inflammatory effects.

Recent comments on this blog have shown that some people have a negative “histamine-y" reaction to Bio Gaia Gastrus.  This is entirely logical since the mode of action of the second bacteria is to generate histamine to activate H2 receptors in the gut.

This might sound rather odd since histamine is thought of as inflammatory, but the researchers working for Bio Gaia have shown that histamine can produce the opposite effect, suppressing TNF via Modulation of PKA and ERK Signaling.




Beneficial microbes and probiotic species, such as Lactobacillus reuteri, produce biologically active compounds that can modulate host mucosal immunity. Previously, immunomodulatory factors secreted by L. reuteri ATCC PTA 6475 were unknown. A combined metabolomics and bacterial genetics strategy was utilized to identify small compound(s) produced by L. reuteri that were TNF-inhibitory. Hydrophilic interaction liquid chromatography-high performance liquid chromatography (HILIC-HPLC) separation isolated TNF-inhibitory compounds, and HILIC-HPLC fraction composition was determined by NMR and mass spectrometry analyses. Histamine was identified and quantified in TNF-inhibitory HILIC-HPLC fractions. Histamine is produced from L-histidine via histidine decarboxylase by some fermentative bacteria including lactobacilli. Targeted mutagenesis of each gene present in the histidine decarboxylase gene cluster in L. reuteri 6475 demonstrated the involvement of histidine decarboxylase pyruvoyl type A (hdcA), histidine/histamine antiporter (hdcP), and hdcB in production of the TNF-inhibitory factor. The mechanism of TNF inhibition by L. reuteri-derived histamine was investigated using Toll-like receptor 2 (TLR2)-activated human monocytoid cells. Bacterial histamine suppressed TNF production via activation of the H2receptor. Histamine from L. reuteri 6475 stimulated increased levels of cAMP, which inhibited downstream MEK/ERK MAPK signaling via protein kinase A (PKA) and resulted in suppression of TNF production by transcriptional regulation. In summary, a component of the gut microbiome, L. reuteri, is able to convert a dietary component, L-histidine, into an immunoregulatory signal, histamine, which suppresses pro-inflammatory TNF production. The identification of bacterial bioactive metabolites and their corresponding mechanisms of action with respect to immunomodulation may lead to improved anti-inflammatory strategies for chronic immune-mediated diseases.


This may mean that people who respond well to H2 histamine antagonists (Zantac, Tagamet etc) are unlikely to benefit from Lactobacillus. reuteri ATCC PTA 6475.

It might also mean that people who respond negatively to Bio Gaia Gastrus might get benefit from H2 histamine antagonists.

It might be worthwhile people trialing the single bacteria Bio Gaia product (Protectis), if they have a negative reaction to Gastrus.






Thursday 1 September 2016

Autism/ASD is not a valid Biological Diagnosis


It's September again and about time most Autism “Experts”, therapists, advocates, charities and journalists went back to school as well



Today’s post is a brief one to highlight a mainstream scientific paper that highlights what regular readers will have already determined; autism/ASD is not a valid diagnosis.  Hundreds of different biological dysfunctions may lead to behaviors, in some shape or form, that will be diagnosed as autism.

So a behavioral diagnosis of autism is just the start of the process to determine what the biological problem(s) are.

Several readers have already highlighted the paper, but it is important enough for its own post.

This also means that clinical trials that are based on a group of subjects with completely different biological dysfunctions, but vaguely similar behavioral issues, are likely often to be of little value.

Fortunately, there are shared pathways affected by many of these numerous biological dysfunctions, so there will be some therapies that apply to clusters of subjects. 


ASD research is at an important crossroads. The ASD diagnosis is important for assigning a child to early behavioral intervention and explaining a child’s condition. But ASD research has not provided a diagnosis-specific medical treatment, or a consistent early predictor, or a unified life course. If the ASD diagnosis also lacks biological and construct validity, a shift away from studying ASD-defined samples would be warranted. Consequently, this paper reviews recent findings for the neurobiological validity of ASD, the construct validity of ASD diagnostic criteria, and the construct validity of ASD spectrum features. The findings reviewed indicate that the ASD diagnosis lacks biological and construct validity. The paper concludes with proposals for research going forward.