UA-45667900-1
Showing posts with label cancer. Show all posts
Showing posts with label cancer. Show all posts

Wednesday, 6 November 2019

Metformin to raise Cognition in Fragile X and some other Autisms?




I started to write this post a long time ago, when Agnieszka first highlighted an interview with Dr Hagerman from UC Davis.  Hagerman is experimenting in using Metformin to treat Fragile-X.

Having again be reminded about Metformin, I realized that I never finished my post on this subject. With some extras about autophagy and a nice graphic courtesy of Ling’s excellent paper, here it is. 

Metformin has already been covered in 5 previous posts.


One interesting point is that the researchers at UC Davis are using the measurement of IQ as one of the outcome measures in their trial of Metformin.  I have been suggesting the French Bumetanide researchers do this for a long time.

It is my opinion that simple medical interventions can have a profound impact on the IQ of some people with severe autism. I mean raising IQ not by 5-10 points as at UC Davis, but by 20-50 points.  IQ can be measured using standardized tools and is far less subjective than any autism rating scale.

The big-time potential IQ enhancers we have seen in this blog include: -

·        Bumetanide/Azosemide
·        Statins (Atorvastatin, Lovastatin, Simvastatin, but they are not equivalent and the effect has nothing to do with lowering cholesterol)
·        Micro-dose Clonazepam
·        Clemastine
·        It seems DMF, in n=2 trial

The good news is that these drugs are all off-patent cheap generics (except DMF), as is metformin.  No need for drugs costing $50,000 a year.

For those that do not know, metformin is the first line medication for type-2 diabetes. It was introduced as a medication in France in 1957 and the United States in 1995.  In many countries Metformin is extremely cheap, with 30 x 500 mg tablets costing about $2 or Eur 2. In the US it costs about $10 for generic, so not expensive. 

There are sound reasons why Metformin could increase IQ in someone with autism or Fragile-X. In the case of idiopathic autism is there a likely biomarker to identify a likely responder? One has not yet been identified.

Clearly Metformin will not work for all people with autism and MR/ID, but even if it only works for 10% that would be great.

Are all parents going to notice an increase in IQ of 5-10 points?  You might think so, but I doubt it.  I would hope therapists, teachers and assistants would notice.

I think basic mental maths is the best way to notice improved cognitive function in people with IQ less than 70.  You can easily establish a baseline and then you can notice/measure improvements.

Improved cognitive function does not just help with maths, it helps with learning basic skills like tying shoe laces, brushing teeth and later shaving.  This does also involve many other types of skill.





In the study, researchers from the UC Davis Medical Investigation of Neurodevelopmental Disorders Institute in California tested the long-term effects of metformin, delivered at 1,000 milligrams (mg) twice a day, for one year in two male patients, 25 and 30 years old. Genetic analysis confirmed that both patients had mutations in the FMR1 gene, confirming their fragile X syndrome diagnoses.

The younger patient had autism and was also diagnosed with generalized anxiety disorder. First prescribed metformin at 22, he is currently taking 500 mg of metformin twice a day and 10 mg per day of simvastatin — used to lower the level of cholesterol in the blood.
The second patient was also diagnosed with anxiety and exhibited socially nervous behaviors, including panic attacks. He had severe limitations in language use, and communicated in short sentences and by mumbling. He had been on an extended-release formulation of metformin, taking 1,000 mg once a day for one year.

Both patients showed significant cognitive and behavioral improvements. After one year of treatment with metformin, test results revealed an increase in the patients’ IQ scores, from 53 to 57 in the younger patient and from 50 to 58 in the second patient.

Verbal and nonverbal IQ — the ability to analyze information and solve problems using visual or hands-on reasoning — were also improved in both patients. Non-verbal IQ increased from 50 to 52 in the younger patient and from 47 to 51 in the other. Verbal IQ went from 61 to 66 in the first patient, and from 58 to 68 in the second.

                                                              

Researcher Randi Hagerman is a big proponent of metformin — a diabetes drug that helps people manage their weight. In fact, Hagerman takes the drug herself as a preventive measure against cancer.
Metformin has also unexpectedly shown promise for improving cognition in people with fragile X syndrome, a leading genetic cause of autism characterized by severe intellectual disability.

A study published in 2017 linked impaired insulin signalling in the brain to cognitive and social deficits in a fruit fly model of fragile X, and the flies improved on metformin. A second paper that year showed that metformin reverses abnormalities in a mouse model of the syndrome, including the number of branches the mice’s neurons form. It also improved seizures and hyperactivity in the mice — issues we also see in people with fragile X.
I began prescribing metformin to people with fragile X syndrome to help curb overeating. Many of the people I treat are overweight because of this habit — it’s one of the symptoms of a subtype of fragile X called the Prader-Willi phenotype, not to be confused with Prader-Willi syndrome.
I was surprised when the families of these individuals told me they could talk better and carry out conversations, where they couldn’t before. That really gave us impetus to conduct a controlled clinical trial.
It’s not a cure-all, but we do see some positive changes. It doesn’t resolve intellectual disability, but we have seen IQ improvements of up to 10 points in two boys who have been treated with metformin. We are very excited about that.

Individuals on metformin tend to start eating less, and often lose weight as a result. I could kick myself, because metformin has been approved to treat obesity for many years, but I never thought to use it in fragile X syndrome. Oftentimes children with fragile X syndrome have so many problems that you aren’t thinking about obesity as the top priority.
We’ve also seen a gradual effect on language, which we can detect after two to three months. Sometimes there are improvements in other behaviors too; I’ve seen mood-stabilizing effects. Many people with fragile X syndrome have issues with aggression, and it’s possible these could be moderated with metformin too. 

Individuals with fragile X syndrome (FXS) have both behavioral and medical comorbidities and the latter include obesity in approximately 30% and the Prader‐Willi Phenotype (PWP) characterized by severe hyperphagia and morbid obesity in less than 10%. Metformin is a drug used in individuals with type 2 diabetes, obesity or impaired glucose tolerance and it has a strong safety profile in children and adults. Recently published studies in the Drosophila model and the knock out mouse model of FXS treated with metformin demonstrate the rescue of multiple phenotypes of FXS.

Materials and Methods

We present 7 cases of individuals with FXS who have been treated with metformin clinically. One case with type 2 diabetes, 3 cases with the PWP, 2 adults with obesity and/or behavioral problems and, a young child with FXS. These individuals were clinically treated with metformin and monitored for behavioral changes with the Aberrant Behavior Checklist and metabolic changes with a fasting glucose and HgbA1c.

Results

We found consistent improvements in irritability, social responsiveness, hyperactivity, and social avoidance, in addition to comments from the family regarding improvements in language and conversational skills. No significant side‐effects were noted and most patients with obesity lost weight.

Conclusion

We recommend a controlled trial of metformin in those with FXS. Metformin appears to be an effective treatment of obesity including those with the PWP in FXS. Our study suggests that metformin may also be a targeted treatment for improving behavior and language in children and adults with FXS.

Recruiting: Clinical Trial of Metformin for Fragile X Syndrome


While a growing number of families are trying metformin and reporting mixed results, metformin has not yet been systematically studied in patients with Fragile X syndrome. This open-label trial is designed to better understand the safety and efficacy of this medicine on behavior and cognition, and to find the best dosages for children and adults.

20 children and adults with Fragile X syndrome will take metformin 250mg twice a day for the first week, followed by metformin 500mg twice a day for the next 8 weeks.
The study will measure changes in the total score on the Aberrant Behavior Checklist-Community (ABC-C) after 9 weeks of metformin treatment. The ABC-C is a 58-item behavior scale which is filled out by a caregiver. In addition, Transcranial Magnetic Stimulation (TMS) will be used to look for changes in cortical excitability and Electroencephalography (EEG) will assess levels of synaptic plasticity.
Participants in this study must be Canadian residents and be able to travel to the University of Sherbrooke in Quebec, Canada, for several visits. If you are interested in metformin but this trial is not convenient, there are two alternatives. FRAXA is funding a new trial of metformin in New Jersey, and Dr. Randi Hagerman is currently recruiting for metformin trial at the University of California at Davis MIND Institute.



Metformin has emerged as a candidate drug for the targeted treatment of FXS based on animal studies showing rescue of multiple phenotypes in the FXS model. Metformin may contribute to normalizing signalling pathways in FXS in the central nervous system, which may include activities of mTOR and PI3K, both of which have shown to be pathogenically overactive in FXS. In addition, metformin inhibits phosphodiesterase, which would lead to correction of cAMP levels, and MMP9 production, which is also elevated in FXS. Looking at the potential signalling pathways, metformin appears to be a good candidate for targeting several of the intracellular functions in neurons disrupted in FXS and, therefore, has potential to rescue several types of symptoms in individuals with FXS. The researchers have utilized metformin in the clinical treatment of over 20 individuals with FXS between the ages of 4 and 58 years and have found the medication to be well tolerated and to provide benefits not only in lowering weight gain and normalizing appetite but also in language and behavior. In this controlled trial, the researchers hope to further assess metformin's safety and benefits in the areas of language and cognition, eating and weight loss, and overall behavior.


mTOR and P13K

Hagerman highlights Metformin’s effects on mTOR and P13K pathways.

This is a highly complex subject and the graphic below from an early post shows how interconnected everything is.  If mTOR is not working correctly you can expect many things not to work as nature intended.

Numerous things can cause an imbalance in mTOR and so there are numerous ways to re-balance it.

Not surprisingly much of this pathway plays a role in many types of cancer.

Hagerman herself is taking Metformin to reduce her chances of developing cancer. I think that is a good choice, particularly if you are overweight.  My anticancer choice, not being overweight, is Atorvastatin which targets inhibition of PI3K signalling through Akt and increases PTEN.

Hagerman is 70 years old and I think many cancers actual initiate years before they are large enough to get noticed and to be effective any preventative therapy needs to be started before that initiation has occurred. Hopefully she started her Metformin long ago. 

Given that 50% of people are likely to develop one cancer or another, I am with Dr Hagerman on the value of prevention, rather than treatment/cure.







The Wrong Statin for Fragile-X?

In the first article highlighted in this post, there is a case history of a man with FX being treated by a Statin, it looks to me that he has the wrong prescription (Simvastatin). Perhaps Dr Hagerman should read this old post from this blog:-


Choose your Statin with Care in FXS, NF1 and idiopathic Autism







   Simvastatin does not reduce ERK1/2 or mTORC1 activation in the Fmr1-/y hippocampus.
So  ? = Does NOT inhibit

The key is to reduce Ras. In the above graphic it questions does Simvastatin inhibit RAS and Rheb.
                                                                                                     

For anyone really interested, the following graphic from a previous post shows the fragile X mental retardation protein, FMRP.  Lack of FMRP goes on increase neuroligins (NLFNS) this then creates an excitatory/inhibitory imbalance which cause mental retardation and features of autism.





This all suggests that the 25 year-old young man with Fragile X treated at UC Davis (case study above) should switch from Simvastatin to Lovastatin.




Metformin and Autophagy

I also think Dr Hagerman is less likely to get dementia now that she is talking metformin.  If she takes vigorous exercise at least once a week, I think that is also going to keep her grey cells ticking over nicely. Like Dr Ben Ari, Hr Hagerman is working way past normal retirement.  If you love your job, then why not?  As with many things, in the case of neurons, “use them or lose them”.

Autophagy in Dementias


Dementias are a varied group of disorders typically associated with memory loss, impaired judgment and/or language and by symptoms affecting other cognitive and social abilities to a degree that interferes with daily functioning. Alzheimer’s disease (AD) is the most common cause of a progressive dementia, followed by dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), vascular dementia (VaD) and HIV associated neurocognitive disorders (HAND).
The pathogenesis of this group of disorders has been linked to the abnormal accumulation of proteins in the brains of affected individuals, which in turn has been related to deficits in protein clearance. Autophagy is a key cellular protein clearance pathway with proteolytic cleavage and degradation via the ubiquitin-proteasome pathway representing another important clearance mechanism. Alterations in the levels of autophagy and the proteins associated with the autophagocytic pathway have been reported in various types of dementias. This review will examine recent literature across these disorders and highlight a common theme of altered autophagy across the spectrum of the dementias.

Below is an excellent graphic from a paper highlighted by Ling. Note metformin, above AMPK.


Autophagy Activator Drugs: A New Opportunity in Neuroprotection from Misfolded Protein Toxicity









I would highlight the presence of IP3R, the calcium channel proposed by Gargus as being a nexus in autism, for where multiple types of autism meet up, to do damage.

Verapamil, in Monty’s Polypill, increases autophagy independently of mTOR in a complicated mechanism  involving IP3R and likley calpain.  It is proposed as a therapy for Huntington’s Disease via this mechanism. At the lower right of the chart below we see calpain, a group of calcium dependent enzymes, not well understood.  ROS can activate calpains via L-type calcium channels.





I would not worry about the details.  The take home point is that if you have autism, dementia or many other neurological conditions, you might well benefit from increasing autophagy.  There are very many ways to do this.      
                                                           
Conclusion

Fortunately, I am not a doctor.  I do recall when my doctor father was out visiting his sick patients at their homes, he did have not only his medical bag, but also some useful gadgets always kept in his car, that might come in handy.

The autism equivalent is the personalized Polypill therapy for daily use and the autism toolbox to delve into to treat flare-ups in autism as and when they arise.

I do think some people should have metformin in their daily Polypill therapy.

I think we can safely call Fragile-X a type of autism, so we already know it works for at least some autism.  Metformin is a very safe old drug, with minimal side effects and it is cheap.  It ticks all the boxes for a potential autism therapy.  Will it work for your case?  I can tell you with certainty that it does not work for everyone.

Metformin has been trialled to treat people with obesity and autism, since it can reduce appetite.

Metformin forTreatment of Overweight Induced by Atypical Antipsychotic Medication in YoungPeople With Autism Spectrum Disorder: A Randomized Clinical Trial.


INTERVENTIONS:

Metformin or matching placebo titrated up to 500 mg twice daily for children aged 6 to 9 years and 850 mg twice daily for those 10 to 17 years.

MAIN OUTCOMES AND MEASURES:

The primary outcome measure was change in body mass index (BMI) z score during 16 weeks of treatment. Secondary outcomes included changes in additional body composition and metabolic variables. Safety, tolerability, and efficacy analyses all used a modified intent-to-treat sample comprising all participants who received at least 1 dose of medication.

RESULTS:

Of the 61 randomized participants, 60 participants initiated treatment (45 [75%] male; mean [SD] age, 12.8 [2.7] years). Metformin reduced BMI z scores from baseline to week 16 significantly more than placebo (difference in 16-week change scores vs placebo, -0.10 [95% CI, -0.16 to -0.04]; P = .003). Statistically significant improvements were also noted in secondary body composition measures (raw BMI, -0.95 [95% CI, -1.46 to -0.45] and raw weight, -2.73 [95% CI, -4.04 to -1.43]) but not in metabolic variables. Overall, metformin was well tolerated. Five participants in the metformin group discontinued treatment owing to adverse events (agitation, 4; sedation, 1). Participants receiving metformin vs placebo experienced gastrointestinal adverse events during a significantly higher percentage of treatment days (25.1% vs 6.8%; P = .005).

CONCLUSIONS AND RELEVANCE:

Metformin may be effective in decreasing weight gain associated with atypical antipsychotic use and is well tolerated by children and adolescents with ASD.

My guess is that a minority will be responders, the benefit will manifest itself in different ways and so it will be a useful part of polytherapy for some people, but it will not be a silver bullet.  Other than via an IQ test, I think the benefit will be hard to measure, even when it is very evident. 

In the end there will be a clever way to predict who will respond to which therapy.  Today’s post actually replaces one that will look into genetic testing and DEGs (differentially expressed genes). Most likely testing for DEGs will be the best predictor of what drugs work for whom.

Intelligent, cautious trial and error using safe drugs is an alternative strategy.  It is available today; it is cheap and it does work.

I have not tried Metformin yet, in recent years I have had most success with my own ideas. I have some of Dr Frye's calcium folinate sitting at home waiting for a trial.  Both Metformin and calcium folinate should be trialled.  The other obvious thing to trial is that Japanese PDE4 inhibitor Ibudilast (Ketas).  Thanks to Rene we now know you can acquire this is via any international pharmacy in Germany, with a prescription. It also reappeared on the website of a Japanese online pharmacy. The Western PDE4 inhibitors, like Daxas/Roflumilast are not selective enough and so are emetic (they make you want to vomit). Low dose Roflumilast has been patented as a cognitive enhancer, but you may need to have a bucket with you at all times.




     






Tuesday, 30 July 2019

Ginseng Compound K Esters for some Epilepsy, Autism and Cancers?

Many natural products like Ginseng and Curcumin do have long known medicinal properties but suffer from extremely low bioavailability, which limits their benefit.
Ginsenosides are compounds found in the Ginseng plant. They are metabolized by the gut flora into active compounds that include Compound K.  Compound K has been shown to have a variety of pharmacological actions such as anti-inflammatory, anti-oxidant, anti-cancer and vasorelaxation.  It also has interesting effects that relate to autism and other neurological disorders.

Compound K (CK) has extremely low bioavailability (circa 5%) which limits it potential therapeutic benefit. There are expensive versions of ginseng that aim to maximize Compound K (CK) production in the gut, but they do nothing to improve how much gets from the gut into the bloodstream.

It is possible to modify Compound K by making an ester. This ester has been shown to be highly bioavailable and that means the theoretic benefits, shown in test tubes, might actually be genuinely achieved in humans.

Two types of ester have been studied, the butyl and octyl ester resulting in so-called CK-B and CK-O.






There currently is a $400 million business selling ginseng worldwide, the research and production is mainly coming from Korea and China.  There probably should be pharmaceutical production of CK-B and/or CK-O, but I would not hold your breath.

CK-O was recently proposed as a treatment for some cancers, so perhaps someone will commercialize it.

Interestingly, the standard form CK has been proposed to treat colon cancer, which does make sense since CK is produced in the gut making colon cancer a good choice. You would think that CK-O would work better.


Bcl-2 / Bax

The gene/protein Bcl-2 is relevant to both cancer and autism and has been covered previously in this blog.

A total of 25 genes make up the Bcl-2 family of proteins. Bcl-2 itself is anti-apoptotic while family member Bax is pro-apoptotic.

Apoptosis is programmed cell death.  The Bax/Bcl-2 ratio determines the apoptotic potential of a cell. Increasing the Bax/Bcl-2 ratio can be highly desirable if you have cancer, since what you want is cell death.

Bcl-2 is dysregulated in autism. Studies have shown that the expression of Bcl-2 is significantly decreased in the brain of autistic subjects. This means a reduction in a protein that blocks apoptotic cell death, i.e. this favours growth and too much growth is a bad thing.


The big head type of autism (macrocephaly) is associated with hyperactive pro-growth signalling pathways, so reduced expression of Bcl-2 is not a surprise.


CK-O for some cancer

The Compound K ester CK-O  exerts strong anti-tumour activity by suppression of anti-apoptotic protein Bcl-2 and increase of pro-apoptotic protein Bax. It increases the Bax/Bcl-2 ratio.


CK-O from some epilepsy and some autism?

There are many types of epilepsy and hundreds of types of autism.
One commonly shared feature is the imbalance between the GABA-mediated inhibition and the glutamate-mediated excitation.

CK-O looks likes it might help both conditions.

·        CK is shown to reduce the expression of NMDA receptors and to attenuate the function of the NMDA receptors in the brain.

·        GABAB receptor activation via CK can regulate KCC2 at the cell surface in a manner that reduces intracellular chloride and hence the reversal potential for GABAA receptors

·        The expression of KCC2 protein was elevated by the treatment of CK while the expression of NKCC1 protein was reversely down-regulated.

·        CK enhances the expression of GABAA receptor subunit α1 in the brain and exhibits a tendency to decrease the expression of NMDAR1 protein in the hippocampus.

                                    
Ginseng for Autism?

There is some weak evidence that Ginseng may help in some autism.

I think what is really happening is that the effect is weak rather than the evidence is weak.  Ginseng may have a weak positive effect in some autism; weak because the amount of Compound K absorbed is trivial.

If Ginseng helps, CK-O could be substantially more effective.

Ginseng,as a GABAb Antagonist, as an "Add-on Therapy" for some Autism? Also Homotaurine and Acamprosate



We demonstrate that GABABR activation can regulate KCC2 at the cell surface in a manner that alters intracellular chloride and the reversal potential for the GABAAR

In the trial below the dose appears very low at 250mg. In the more encouraging study in ADHD the dose was 1000mg twice a day.


Autism is a pervasive developmental disorder, with impairments in reciprocal social interaction and verbal and nonverbal communication. There is often the need of psychopharmacological intervention in addition to psychobehavioral therapies, but benefits are limited by adverse side effects. For that reason, Panax ginseng, which is comparable with Piracetam, a substance effective in the treatment of autism, was investigated for possible improvement of autistic symptoms. There was some improvement, which suggests some benefits of Panax ginseng, at least as an add-on therapy.

I would not expect a dramatic effect from any commercial Ginseng product, but CK-O really could have an effect.




Although there are many research reports regarding the bioactive function of ginsenosides and ginseng, studies on the neuroprotective eect and eects on the cognitive function of compound K are limited. It is generally agreed that compound K is more bioavailable than the parent ginsenosides, including Rb1, Rb2, and Rc, and is the major contributing factor to the health benefits of ginseng. However, as most studies were conducted using disease-associated models, such as Alzheimer’s disease and ischemic stroke, the results cannot be directly translated to the healthy normal population. Furthermore, it is not clear whether compound K can cross the blood–brain barrier and exert any action on cognitive function in humans, even though the compound was reported to facilitate GABA release in the hippocampus and exhibit a protective effect against scopolamine-induced hippocampal damage in a mouse model. The possible mechanisms of action of compound K in neuroprotection and cognitive improvement include attenuation of ROS levels in neural cells through induction of antioxidant enzymes, regulation of NO, GABA, and serotonin receptors, Ca 2+ channel modulation, regulation of the MAPK pathway, and inhibition of inflammation.
Although ginseng and ginsenosides were shown to have neuroprotective and cognitive enhancing eects, further research is required to establish whether compound K is the major component of ginseng responsible for cognitive improvement in humans.

The imbalance between the GABA-mediated inhibition and the glutamate-mediated excitation is the primary pathological mechanism of epilepsy. GABAergic and glutamatergic neurotransmission have become the most important targets for controlling epilepsy. Ginsenoside compound K (GCK) is a main metabolic production of the ginsenoside Rb1, Rb2, and Rc in the intestinal microbiota. Previous studies show that GCK promoted the release of GABA from the hippocampal neurons and enhanced the activity of GABAA receptors. GCK is shown to reduce the expression of NMDAR and to attenuate the function of the NMDA receptors in the brain. The anti-seizure effects of GCK have not been reported so far. Therefore, this study aimed to investigate the effects of GCK on epilepsy and its potential mechanism. The rat model of seizure or status epilepticus (SE) was established with either Pentylenetetrazole or Lithium chloride-pilocarpine. The Racine’s scale was used to evaluate seizure activity. The levels of the amino acid neurotransmitters were detected in the pilocarpine-induced epileptic rats. The expression levels of GABAARα1, NMDAR1, KCC2, and NKCC1 protein in the hippocampus were determined via western blot or immunohistochemistry after SE. We found that GCK had deceased seizure intensity and prolonged the latency of seizures. GCK increased the contents of GABA, while the contents of glutamate remained unchanged. GCK enhanced the expression of GABAARα1 in the brain and exhibited a tendency to decrease the expression of NMDAR1 protein in the hippocampus. The expression of KCC2 protein was elevated by the treatment of GCK after SE, while the expression of NKCC1 protein was reversely down-regulated. These findings suggested that GCK exerted anti-epileptic effects by promoting the hippocampal GABA release and enhancing the GABAAR-mediated inhibitory synaptic transmission.


Absorption mechanismof ginsenoside compound K and its butyl and octyl ester prodrugs in Caco-2cells.

 

Ginsenoside compound K (CK) is a bioactive compound with poor oral bioavailability due to its high polarity, while its novel ester prodrugs, the butyl and octyl ester (CK-B and CK-O), are more lipophilic than the original drug and have an excellent bioavailability. The aim of this study was to examine the transport mechanisms of CK, CK-B, and CK-O using human Caco-2 cells. Results showed that CK had a low permeability coefficient (8.65 × 10(-7) cm/s) for apical-to-basolated (AP-BL) transport at 10-50 μM, while the transport rate for AP to BL flux of CK-B (2.97 × 10(-6) cm/s) and CK-O (2.84 × 10(-6) cm/s) was significantly greater than that of CK. Furthermore, the major transport mechanism of CK was found as passive transcellular diffusion with active efflux mediated by P-glycoprotein (P-gp). In addition, it was found that CK-B and CK-O were not the substrate of efflux transporter since the selective inhibitors (verapamil and MK-571) of efflux transporter had little effects on the transport of CK-B and CK-O in the Caco-2 cells. These results suggest that improving the lipophilicity of CK by acylation can significantly improve the transport across Caco-2 cells.

Panax ginseng C.A. Meyer, the active components of which are mainly ginsenosides, is frequently utilized as a herbal drug in traditional oriental medicine. These ginsenosides, which belong to the class of triterpene saponins, have been reported to possess various biological and pharmacological activities such as antiaging, antiinflammation and antioxidation in central nerve system, cardiovascular system and immune system. Previous studies have shown that the pharmacological actions of ginsenosides contributed to their metabolites through biotransformation by human intestinal bacteria. Compound K (CK; Figure 1) is one of the main pharmacologically active metabolites of protopanaxadiol ginsenosides (e.g., Rb1, Rb2 and Rc) and it was reported that, it was accumulated in the liver after absorption from the GI tract to the blood, and some CK was transformed into fatty acid esters which may be the active components of ginsenosides in the body. Many studies revealed that most of the ginsenosides are poorly absorbed along the human intestinal tract due to a high polarity. Odani et al. have reported that the amount of ginsenoside Rg1 absorbed via oral administration was within the range of 1.9−20.0% of the dosage in animal models. Other ginsenosides such as Rb1 and Rb2 were also slowly absorbed through digestive tract, and the oral bioavailabilities in rats were relatively low. The biological activities of drugs depend not only on their chemical structures, but also on their degree of lipophilic and membrane permeation, which could enhance their transport across the cell membrane or influence their interaction with proteins and enzymes. Recently, considerable attention has been paid to the development of ester prodrugs, which is a widely used approach to improving overall lipophicity, membrane permehave been reported to enhance its lipophilicity, bioavailability and in vivo activity. However, to date, limited information is available concerning the mechanisms of oral absorption for CK and production of ester prodrugs to enhance the oral absorption of ginsenoside CK. To increase the oral absorption of CK, esterification provides a route to obtain more lipophilic derivatives. In addition, it has been reported that acylation of cholestane glycoside increased the antitumor potency. Several acylated triterpenoid saponins isolated from the roots of Solidago virgaurea subsp. virgaurea in a low concentration also activated the metabolism of endothelial cells, which enhanced the permeability of the blood vessel walls for better adsorption of the saponins into tissues. We thus speculated that the novel ester prodrugs of CK, butyl and octyl esters (CK-B and CK-O; Figure 1), which are more lipophilic than parent compound, may have an excellent oral bioavailability. The objective of this study was to determine the transepithelial transport and absorption mechanisms of CK and its ester derivatives in the Caco-2 system. Caco-2 cell monolayers have been generally accepted as an in vitro model for prediction of drug absorption across human intestine and for mechanistic studies of intestinal drug transport since these cells show morphological and functional similarities to human small intestinal epithelial cells. In this study, both ester derivatives were utilized for transepithelial transport and absorption assays in Caco-2 monolayers compared with CK to investigate whether esterification could enhance the membrane permeability of high hydrophilic compound, thus improving the intestinal absorption of drug.
Our results are consistent with the previous reports which showed that CK had a low oral bioavailability (approximately 5%) in rats. However, as shown in our results, the low oral bioavailability of CK can be improved by esterification of CK into CK-B and CK-O.


Octyl ester ofginsenoside compound K as novel anti‐hepatoma compound: Synthesis and evaluation on murine H22 cells in vitro and in vivo


Ginsenoside compound K (M1) is the active form of major ginsenosides deglycosylated by intestinal bacteria after oral administration. However, M1 was reported to selectively accumulate in liver and transform to fatty acid esters. Ester of M1 was not excreted by bile as M1 was, which means it was accumulated in the liver longer than M1. This study reported a synthetic method of M1‐O, a mono‐octyl ester of M1, and evaluated the anticancer property against murine H22 cell both in vitro and in vivo. As a result, both M1 and M1‐O showed a dose‐dependent manner in cytotoxicity assay in vitro. At lower dose of 12.5 μm, M1‐O showed moderate detoxification. Instead, M1‐O exhibited significantly higher inhibition in H22‐bearing mice than M1. M1‐O induced murine H22 tumor cellular apoptosis in caspase‐dependent pathway given that pan‐caspase inhibitor, Z‐VAD‐FMK, could reverse the cytotoxicity induced by M1‐O. Additionally, pro‐ and anti‐apoptosis proteins, Bcl‐2 and Bax, altered and consequently induced increased expression of cleaved caspase‐3. Interestingly, cyclophosphamide regimen significantly induced atrophy of spleen and thymus, main immune organs, while M1‐O treatment greatly alleviated this atrophy. Collectively, we propose M1‐O as a candidate for live cancer treatment.

M1-O exerted strong anti-tumor activity by suppression of anti-apoptotic protein Bcl-2 and increase of pro-apoptotic protein Bax

Note: M1-O is the same think as CK-O


Ginsenosides are isolated from the Panax quinquefolius. This is a natural product triterpene saponins and steroid glycosides. Ginsenosides are the members of a dammarane family, which consists of a 4-ring and steroid-like structure. All ginsenosides have two or three hydroxyl groups in the carbon 3 and 20. Ginsenosides are converted into active metabolites like 20(S)- protopanaxadiol Rb1-Rb3, Rc, Rd, Rg3, Rh2, Rs1 (2) with help of human gut bacteria -glycosidase Eubacterium sp. A-44. Ginsenosides produced a variety of pharmacological activities such as anti-inflammatory, anti-oxidant, anti-cancer and vasorelaxation.                                                                                                                                                                       
                      

Emerging signals modulating potential of ginseng and its active compounds focusing on neurodegenerative diseases

  

Conclusion

The ginseng compound K ester CK-O is likely to be a potent drug in humans with a range of effects, some of which do relate to autism and epilepsy.

Very often people with epilepsy are excluded from autism clinical trials.  Here is one drug where you might want to start with that very group.

CK-O will have multiple effects, meaning it is not selective, so while it may have some very good effects, there may be some negative ones.

You might think the CK-O molecule would be a good basis on which to build a modern patentable drug; a K-O (knock-out) for someone.

Natural substances with health benefits like phytoestrogens (soy etc), curcumin/turmeric, ginseng and even bee propolis either need to be eaten in large quantities or the active substance identified and synthesized. The people with neurofibromatosis (NF-1, NF-2) consuming large amounts of expensive New Zealand propolis as a PAK1 inhibitor might as well save money and buy the active ingredient itself another ester, this time caffeic acid phenethyl ester, and gives the bees a rest.