UA-45667900-1
Showing posts with label cancer. Show all posts
Showing posts with label cancer. Show all posts

Tuesday, 30 July 2019

Ginseng Compound K Esters for some Epilepsy, Autism and Cancers?

Many natural products like Ginseng and Curcumin do have long known medicinal properties but suffer from extremely low bioavailability, which limits their benefit.
Ginsenosides are compounds found in the Ginseng plant. They are metabolized by the gut flora into active compounds that include Compound K.  Compound K has been shown to have a variety of pharmacological actions such as anti-inflammatory, anti-oxidant, anti-cancer and vasorelaxation.  It also has interesting effects that relate to autism and other neurological disorders.

Compound K (CK) has extremely low bioavailability (circa 5%) which limits it potential therapeutic benefit. There are expensive versions of ginseng that aim to maximize Compound K (CK) production in the gut, but they do nothing to improve how much gets from the gut into the bloodstream.

It is possible to modify Compound K by making an ester. This ester has been shown to be highly bioavailable and that means the theoretic benefits, shown in test tubes, might actually be genuinely achieved in humans.

Two types of ester have been studied, the butyl and octyl ester resulting in so-called CK-B and CK-O.






There currently is a $400 million business selling ginseng worldwide, the research and production is mainly coming from Korea and China.  There probably should be pharmaceutical production of CK-B and/or CK-O, but I would not hold your breath.

CK-O was recently proposed as a treatment for some cancers, so perhaps someone will commercialize it.

Interestingly, the standard form CK has been proposed to treat colon cancer, which does make sense since CK is produced in the gut making colon cancer a good choice. You would think that CK-O would work better.


Bcl-2 / Bax

The gene/protein Bcl-2 is relevant to both cancer and autism and has been covered previously in this blog.

A total of 25 genes make up the Bcl-2 family of proteins. Bcl-2 itself is anti-apoptotic while family member Bax is pro-apoptotic.

Apoptosis is programmed cell death.  The Bax/Bcl-2 ratio determines the apoptotic potential of a cell. Increasing the Bax/Bcl-2 ratio can be highly desirable if you have cancer, since what you want is cell death.

Bcl-2 is dysregulated in autism. Studies have shown that the expression of Bcl-2 is significantly decreased in the brain of autistic subjects. This means a reduction in a protein that blocks apoptotic cell death, i.e. this favours growth and too much growth is a bad thing.


The big head type of autism (macrocephaly) is associated with hyperactive pro-growth signalling pathways, so reduced expression of Bcl-2 is not a surprise.


CK-O for some cancer

The Compound K ester CK-O  exerts strong anti-tumour activity by suppression of anti-apoptotic protein Bcl-2 and increase of pro-apoptotic protein Bax. It increases the Bax/Bcl-2 ratio.


CK-O from some epilepsy and some autism?

There are many types of epilepsy and hundreds of types of autism.
One commonly shared feature is the imbalance between the GABA-mediated inhibition and the glutamate-mediated excitation.

CK-O looks likes it might help both conditions.

·        CK is shown to reduce the expression of NMDA receptors and to attenuate the function of the NMDA receptors in the brain.

·        GABAB receptor activation via CK can regulate KCC2 at the cell surface in a manner that reduces intracellular chloride and hence the reversal potential for GABAA receptors

·        The expression of KCC2 protein was elevated by the treatment of CK while the expression of NKCC1 protein was reversely down-regulated.

·        CK enhances the expression of GABAA receptor subunit α1 in the brain and exhibits a tendency to decrease the expression of NMDAR1 protein in the hippocampus.

                                    
Ginseng for Autism?

There is some weak evidence that Ginseng may help in some autism.

I think what is really happening is that the effect is weak rather than the evidence is weak.  Ginseng may have a weak positive effect in some autism; weak because the amount of Compound K absorbed is trivial.

If Ginseng helps, CK-O could be substantially more effective.

Ginseng,as a GABAb Antagonist, as an "Add-on Therapy" for some Autism? Also Homotaurine and Acamprosate



We demonstrate that GABABR activation can regulate KCC2 at the cell surface in a manner that alters intracellular chloride and the reversal potential for the GABAAR

In the trial below the dose appears very low at 250mg. In the more encouraging study in ADHD the dose was 1000mg twice a day.


Autism is a pervasive developmental disorder, with impairments in reciprocal social interaction and verbal and nonverbal communication. There is often the need of psychopharmacological intervention in addition to psychobehavioral therapies, but benefits are limited by adverse side effects. For that reason, Panax ginseng, which is comparable with Piracetam, a substance effective in the treatment of autism, was investigated for possible improvement of autistic symptoms. There was some improvement, which suggests some benefits of Panax ginseng, at least as an add-on therapy.

I would not expect a dramatic effect from any commercial Ginseng product, but CK-O really could have an effect.




Although there are many research reports regarding the bioactive function of ginsenosides and ginseng, studies on the neuroprotective eect and eects on the cognitive function of compound K are limited. It is generally agreed that compound K is more bioavailable than the parent ginsenosides, including Rb1, Rb2, and Rc, and is the major contributing factor to the health benefits of ginseng. However, as most studies were conducted using disease-associated models, such as Alzheimer’s disease and ischemic stroke, the results cannot be directly translated to the healthy normal population. Furthermore, it is not clear whether compound K can cross the blood–brain barrier and exert any action on cognitive function in humans, even though the compound was reported to facilitate GABA release in the hippocampus and exhibit a protective effect against scopolamine-induced hippocampal damage in a mouse model. The possible mechanisms of action of compound K in neuroprotection and cognitive improvement include attenuation of ROS levels in neural cells through induction of antioxidant enzymes, regulation of NO, GABA, and serotonin receptors, Ca 2+ channel modulation, regulation of the MAPK pathway, and inhibition of inflammation.
Although ginseng and ginsenosides were shown to have neuroprotective and cognitive enhancing eects, further research is required to establish whether compound K is the major component of ginseng responsible for cognitive improvement in humans.

The imbalance between the GABA-mediated inhibition and the glutamate-mediated excitation is the primary pathological mechanism of epilepsy. GABAergic and glutamatergic neurotransmission have become the most important targets for controlling epilepsy. Ginsenoside compound K (GCK) is a main metabolic production of the ginsenoside Rb1, Rb2, and Rc in the intestinal microbiota. Previous studies show that GCK promoted the release of GABA from the hippocampal neurons and enhanced the activity of GABAA receptors. GCK is shown to reduce the expression of NMDAR and to attenuate the function of the NMDA receptors in the brain. The anti-seizure effects of GCK have not been reported so far. Therefore, this study aimed to investigate the effects of GCK on epilepsy and its potential mechanism. The rat model of seizure or status epilepticus (SE) was established with either Pentylenetetrazole or Lithium chloride-pilocarpine. The Racine’s scale was used to evaluate seizure activity. The levels of the amino acid neurotransmitters were detected in the pilocarpine-induced epileptic rats. The expression levels of GABAARα1, NMDAR1, KCC2, and NKCC1 protein in the hippocampus were determined via western blot or immunohistochemistry after SE. We found that GCK had deceased seizure intensity and prolonged the latency of seizures. GCK increased the contents of GABA, while the contents of glutamate remained unchanged. GCK enhanced the expression of GABAARα1 in the brain and exhibited a tendency to decrease the expression of NMDAR1 protein in the hippocampus. The expression of KCC2 protein was elevated by the treatment of GCK after SE, while the expression of NKCC1 protein was reversely down-regulated. These findings suggested that GCK exerted anti-epileptic effects by promoting the hippocampal GABA release and enhancing the GABAAR-mediated inhibitory synaptic transmission.


Absorption mechanismof ginsenoside compound K and its butyl and octyl ester prodrugs in Caco-2cells.

 

Ginsenoside compound K (CK) is a bioactive compound with poor oral bioavailability due to its high polarity, while its novel ester prodrugs, the butyl and octyl ester (CK-B and CK-O), are more lipophilic than the original drug and have an excellent bioavailability. The aim of this study was to examine the transport mechanisms of CK, CK-B, and CK-O using human Caco-2 cells. Results showed that CK had a low permeability coefficient (8.65 × 10(-7) cm/s) for apical-to-basolated (AP-BL) transport at 10-50 μM, while the transport rate for AP to BL flux of CK-B (2.97 × 10(-6) cm/s) and CK-O (2.84 × 10(-6) cm/s) was significantly greater than that of CK. Furthermore, the major transport mechanism of CK was found as passive transcellular diffusion with active efflux mediated by P-glycoprotein (P-gp). In addition, it was found that CK-B and CK-O were not the substrate of efflux transporter since the selective inhibitors (verapamil and MK-571) of efflux transporter had little effects on the transport of CK-B and CK-O in the Caco-2 cells. These results suggest that improving the lipophilicity of CK by acylation can significantly improve the transport across Caco-2 cells.

Panax ginseng C.A. Meyer, the active components of which are mainly ginsenosides, is frequently utilized as a herbal drug in traditional oriental medicine. These ginsenosides, which belong to the class of triterpene saponins, have been reported to possess various biological and pharmacological activities such as antiaging, antiinflammation and antioxidation in central nerve system, cardiovascular system and immune system. Previous studies have shown that the pharmacological actions of ginsenosides contributed to their metabolites through biotransformation by human intestinal bacteria. Compound K (CK; Figure 1) is one of the main pharmacologically active metabolites of protopanaxadiol ginsenosides (e.g., Rb1, Rb2 and Rc) and it was reported that, it was accumulated in the liver after absorption from the GI tract to the blood, and some CK was transformed into fatty acid esters which may be the active components of ginsenosides in the body. Many studies revealed that most of the ginsenosides are poorly absorbed along the human intestinal tract due to a high polarity. Odani et al. have reported that the amount of ginsenoside Rg1 absorbed via oral administration was within the range of 1.9−20.0% of the dosage in animal models. Other ginsenosides such as Rb1 and Rb2 were also slowly absorbed through digestive tract, and the oral bioavailabilities in rats were relatively low. The biological activities of drugs depend not only on their chemical structures, but also on their degree of lipophilic and membrane permeation, which could enhance their transport across the cell membrane or influence their interaction with proteins and enzymes. Recently, considerable attention has been paid to the development of ester prodrugs, which is a widely used approach to improving overall lipophicity, membrane permehave been reported to enhance its lipophilicity, bioavailability and in vivo activity. However, to date, limited information is available concerning the mechanisms of oral absorption for CK and production of ester prodrugs to enhance the oral absorption of ginsenoside CK. To increase the oral absorption of CK, esterification provides a route to obtain more lipophilic derivatives. In addition, it has been reported that acylation of cholestane glycoside increased the antitumor potency. Several acylated triterpenoid saponins isolated from the roots of Solidago virgaurea subsp. virgaurea in a low concentration also activated the metabolism of endothelial cells, which enhanced the permeability of the blood vessel walls for better adsorption of the saponins into tissues. We thus speculated that the novel ester prodrugs of CK, butyl and octyl esters (CK-B and CK-O; Figure 1), which are more lipophilic than parent compound, may have an excellent oral bioavailability. The objective of this study was to determine the transepithelial transport and absorption mechanisms of CK and its ester derivatives in the Caco-2 system. Caco-2 cell monolayers have been generally accepted as an in vitro model for prediction of drug absorption across human intestine and for mechanistic studies of intestinal drug transport since these cells show morphological and functional similarities to human small intestinal epithelial cells. In this study, both ester derivatives were utilized for transepithelial transport and absorption assays in Caco-2 monolayers compared with CK to investigate whether esterification could enhance the membrane permeability of high hydrophilic compound, thus improving the intestinal absorption of drug.
Our results are consistent with the previous reports which showed that CK had a low oral bioavailability (approximately 5%) in rats. However, as shown in our results, the low oral bioavailability of CK can be improved by esterification of CK into CK-B and CK-O.


Octyl ester ofginsenoside compound K as novel anti‐hepatoma compound: Synthesis and evaluation on murine H22 cells in vitro and in vivo


Ginsenoside compound K (M1) is the active form of major ginsenosides deglycosylated by intestinal bacteria after oral administration. However, M1 was reported to selectively accumulate in liver and transform to fatty acid esters. Ester of M1 was not excreted by bile as M1 was, which means it was accumulated in the liver longer than M1. This study reported a synthetic method of M1‐O, a mono‐octyl ester of M1, and evaluated the anticancer property against murine H22 cell both in vitro and in vivo. As a result, both M1 and M1‐O showed a dose‐dependent manner in cytotoxicity assay in vitro. At lower dose of 12.5 μm, M1‐O showed moderate detoxification. Instead, M1‐O exhibited significantly higher inhibition in H22‐bearing mice than M1. M1‐O induced murine H22 tumor cellular apoptosis in caspase‐dependent pathway given that pan‐caspase inhibitor, Z‐VAD‐FMK, could reverse the cytotoxicity induced by M1‐O. Additionally, pro‐ and anti‐apoptosis proteins, Bcl‐2 and Bax, altered and consequently induced increased expression of cleaved caspase‐3. Interestingly, cyclophosphamide regimen significantly induced atrophy of spleen and thymus, main immune organs, while M1‐O treatment greatly alleviated this atrophy. Collectively, we propose M1‐O as a candidate for live cancer treatment.

M1-O exerted strong anti-tumor activity by suppression of anti-apoptotic protein Bcl-2 and increase of pro-apoptotic protein Bax

Note: M1-O is the same think as CK-O


Ginsenosides are isolated from the Panax quinquefolius. This is a natural product triterpene saponins and steroid glycosides. Ginsenosides are the members of a dammarane family, which consists of a 4-ring and steroid-like structure. All ginsenosides have two or three hydroxyl groups in the carbon 3 and 20. Ginsenosides are converted into active metabolites like 20(S)- protopanaxadiol Rb1-Rb3, Rc, Rd, Rg3, Rh2, Rs1 (2) with help of human gut bacteria -glycosidase Eubacterium sp. A-44. Ginsenosides produced a variety of pharmacological activities such as anti-inflammatory, anti-oxidant, anti-cancer and vasorelaxation.                                                                                                                                                                       
                      

Emerging signals modulating potential of ginseng and its active compounds focusing on neurodegenerative diseases

  

Conclusion

The ginseng compound K ester CK-O is likely to be a potent drug in humans with a range of effects, some of which do relate to autism and epilepsy.

Very often people with epilepsy are excluded from autism clinical trials.  Here is one drug where you might want to start with that very group.

CK-O will have multiple effects, meaning it is not selective, so while it may have some very good effects, there may be some negative ones.

You might think the CK-O molecule would be a good basis on which to build a modern patentable drug; a K-O (knock-out) for someone.

Natural substances with health benefits like phytoestrogens (soy etc), curcumin/turmeric, ginseng and even bee propolis either need to be eaten in large quantities or the active substance identified and synthesized. The people with neurofibromatosis (NF-1, NF-2) consuming large amounts of expensive New Zealand propolis as a PAK1 inhibitor might as well save money and buy the active ingredient itself another ester, this time caffeic acid phenethyl ester, and gives the bees a rest.






Thursday, 7 February 2019

Pterostilbene for Neuromodulation – worth a look?

Google have just discontinued Google+

Many people followed this blog via Google+ 

You can either follow by email (just to right of the blueberries), or follow by Blogger



Blueberries

A common criticism of this blog is that it is mainly about prescription drugs rather than OTC supplements.
Today’s post is about a supplement that is highly regarded by our reader Ling.
Pterostilbene is like a super potent version of resveratrol.  

Resveratrol is quite well known and has long been put forward as having some potentially highly beneficial health effects, but in practise it is just too poorly absorbed to have much effect in humans.
Pterostilbene is found in blueberries.  Also found in blueberries is Anthocyanin, which is worth a mention in this post, it is what gives blueberries their colour; very often it is the colour in a food that underlies part of its health benefit. This is why eating a mixed colour diet is a wise idea.
Aronia is extremely rich in anthocyanins and Aronia juice is very common where I live. We even have a bottle of the dark coloured juice in the kitchen.
The purple colour in beetroot is betanin, a so-called betacyanin and may well have anti-Alzheimer’s effects, inhibiting plaque formation.
Anthocyanin is put forward as one reason certain Japanese who eat large amounts of purple sweet potato do not suffer much cancer or dementia and live a very long time.


Today we are mainly looking at pterostilbene, but if you want Anthocyanins, to avoid dementia, just eat blue and purple coloured fruit and vegetables on a very regular basis.
Ling has proposed pterostilbene as a PDE4 inhibitor, but as is often the case, it has numerous other effects, so it would be hard to know which is the main reason it might be therapeutic.  


Known biological effects of Pterostilbene                                                                                   
Here is an excellent graphic that highlights many of the effects of Pterostilbene, other than on PDE4.





The regular readers of this blog will note that the great majority of the above signalling molecules are implicated in autism.

The proposed effects on the brain are highlighted in the next graphic





The source paper is here: -  

           

Based on the evidence presented, PTE (Pterostilbene) is more bioavailable and better at evoking molecular and functional events than RES (Resveratrol) in vivo

Although clinical trials are underway to assess the effects of RES in diseases such as dementia and AD, pre-clinical and clinical studies on PTE have yet to be conducted. Furthermore, the biological effects of many of the structural analogues of RES and PTE are unknown, and no studies have identified the metabolites of RES or PTE in brain tissues. There is a need for future studies to identify means of enhancing the efficacy and bioavailability of these compounds and to analyse the metabolites of these compounds in thebrain. Altogether, the evidence from a variety of studies strongly suggests the potential of RES and PTE as promising bioactive agents to improve brain health and prevent neurodegeneration

Most research, but not all, concerns aging and dementia. 


Pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene) is a natural dietary compound and the primary antioxidant component of blueberries. It has increased bioavailability in comparison to other stilbene compounds, which may enhance its dietary benefit and possibly contribute to a valuable clinical effect. Multiple studies have demonstrated the antioxidant activity of pterostilbene in both in vitro and in vivo models illustrating both preventative and therapeutic benefits. The antioxidant activity of pterostilbene has been implicated in anticarcinogenesis, modulation of neurological disease, anti-inflammation, attenuation of vascular disease, and amelioration of diabetes. In this review, we explore the antioxidant properties of pterostilbene and its relationship to common disease pathways and give a summary of the clinical potential of pterostilbene in the prevention and treatment of various medical conditions.

Resveratrol is a natural phytoestrogen with neuroprotective properties. Polyphenolic compounds including resveratrol exert in vitro antioxidant, anti-inflammatory, and antiamyloid effects. Resveratrol and its derivative pterostilbene are able to cross the blood-brain barrier and to influence brain activity. The present short review summarizes the available evidence regarding the effects of these polyphenols on pathology and cognition in animal models and human subjects with dementia. Numerous investigations in cellular and mammalian models have associated resveratrol and pterostilbene with protection against dementia syndromes such as Alzheimer's disease (AD) and vascular dementia. The neuroprotective activity of resveratrol and pterostilbene demonstrated in in vitro and in vivo studies suggests a promising role for these compounds in the prevention and treatment of dementia. In comparison to resveratrol, pterostilbene appears to be more effective in combatting brain changes associated with aging. This may be attributed to the more lipophilic nature of pterostilbene with its two methoxyl groups compared with the two hydroxyl groups of resveratrol. The findings of available intervention trials of resveratrol in individuals with mild cognitive impairment or AD do not provide evidence of neuroprotective or therapeutic effects. Future clinical trials should be conducted with long-term exposure to preparations of resveratrol and pterostilbene with high bioavailability.

Low-dose pterostilbene, but not resveratrol, is apotent neuromodulator in aging and Alzheimer's disease.

Recent studies have implicated resveratrol and pterostilbene, a resveratrol derivative, in the protection against age-related diseases including Alzheimer's disease (AD). However, the mechanism for the favorable effects of resveratrol in the brain remains unclear and information about direct cross-comparisons between these analogs is rare. As such, the purpose of this study was to compare the effectiveness of diet-achievable supplementation of resveratrol to that of pterostilbene at improving functional deficits and AD pathology in the SAMP8 mouse, a model of accelerated aging that is increasingly being validated as a model of sporadic and age-related AD. Furthermore we sought to determine the mechanism of action responsible for functional improvements observed by studying cellular stress, inflammation, and pathology markers known to be altered in AD. Two months of pterostilbene diet but not resveratrol significantly improved radial arm water maze function in SAMP8 compared with control-fed animals. Neither resveratrol nor pterostilbene increased sirtuin 1 (SIRT1) expression or downstream markers of sirtuin 1 activation. Importantly, markers of cellular stress, inflammation, and AD pathology were positively modulated by pterostilbene but not resveratrol and were associated with upregulation of peroxisome proliferator-activated receptor (PPAR) alpha expression. Taken together our findings indicate that at equivalent and diet-achievable doses pterostilbene is a more potent modulator of cognition and cellular stress than resveratrol, likely driven by increased peroxisome proliferator-activated receptor alpha expression and increased lipophilicity due to substitution of hydroxy with methoxy group in pterostilbene                                                                                                        


Effect of resveratrol and pterostilbene on aging and longevity.

Over the past years, several studies have found that foods rich in polyphenols protect against age-related disease, such as atherosclerosis, cardiovascular disease, cancer, arthritis, cataracts, osteoporosis, type 2 diabetes (T2D), hypertension and Alzheimer's disease. Resveratrol and pterostilbene, the polyphenol found in grape and blueberries, have beneficial effects as anti-aging compounds through modulating the hallmarks of aging, including oxidative damage, inflammation, telomere attrition and cell senescence. In this review, we discuss the relationship between resveratrol and pterostilbene and possible aging biomarker, including oxidative stress, inflammation, and high-calorie diets. Moreover, we also discuss the positive effect of resveratrol and pterostilbene on lifespan, aged-related disease, and health maintenance. Furthermore, we summarize a variety of important mechanisms modulated by resveratrol and pterostilbene possibly involved in attenuating age-associated disorders. Overall, we describe resveratrol and pterostilbene potential for prevention or treatment of several age-related diseases by modulating age-related mechanisms.

One area of autism research concerns targeting mTOR signalling. This is covered in the paper below


and was the subject of this blog post from 2015


Targeting the PI3K/Akt/mTOR signaling pathway by pterostilbene attenuates mantle cell lymphoma progression.


Mantle cell lymphoma (MCL) is an aggressive and mostly incurable B-cell malignancy with frequent relapses after an initial response to standard chemotherapy. Therefore, novel therapies are urgently required to improve MCL clinical outcomes. In this study, MCL cell lines were treated with pterostilbene (PTE), a non-toxic natural phenolic compound primarily found in blueberries. The antitumor activity of PTE was examined by using the Cell Counting Kit-8, apoptosis assays, cell cycle analysis, JC-1 mitochondrial membrane potential assay, western blot analysis, and tumor xenograft models. PTE treatment induced a dose-dependent inhibition of cell proliferation, including the induction of cell apoptosis and cell cycle arrest at the G0/G1 phase. Moreover, the PI3K/Akt/mTOR pathway was downregulated after PTE treatment, which might account for the anti-MCL effects of PTE. Synergistic cytotoxicity was also observed, both in MCL cells and in xenograft mouse models, when PTE was administered in combination with bortezomib (BTZ). The antitumor effects of PTE shown in our study provide an innovative option for MCL patients with poor responses to standardized therapy. It is noteworthy that the treatment combining PTE with BTZ warrants clinical investigation, which may offer an alternative and effective MCL treatment in the future.


And finally, PDE4
Inhibiting PDE4 has some very useful anti-inflammatory benefits. It may also improve myelination and indeed cognition.  PDE4 inhibitors are currently used to treat severe asthma and in clinical trials for Multiple Sclerosis (MS) and cognitive enhancement.
There are different sub-types of PDE4.
Inhibiting one of the subtypes has the tendency to make you want to vomit.  This is currently the drawback that limits the use of PDE4 inhibiting drugs.
A selective PDE4 inhibitor is required.
As Ling has found, research does indeed show that pterostilbene is a PDE4 inhibitor.

The molecular basis for the inhibition of phosphodiesterase-4D by three natural resveratrol analogs. Isolation, molecular docking, molecular dynamics simulations, binding free energy, and bioassay.

The phosphodiesterase-4 (PDE4) enzyme is a promising therapeutic target for several diseases. Our previous studies found resveratrol and moracin M to be natural PDE4 inhibitors. In the present study, three natural resveratrol analogs [pterostilbene, (E)-2',3,5',5-tetrahydroxystilbene (THSB), and oxyresveratrol] are structurally related to resveratrol and moracin M, but their inhibition and mechanism against PDE4 are still unclear. A combined method consisting of molecular docking, molecular dynamics (MD) simulations, binding free energy, and bioassay was performed to better understand their inhibitory mechanism. The binding pattern of pterostilbene demonstrates that it involves hydrophobic/aromatic interactions with Phe340 and Phe372, and forms hydrogen bond(s) with His160 and Gln369 in the active site pocket. The present work also reveals that oxyresveratrol and THSB can bind to PDE4D and exhibits less negative predicted binding free energies than pterostilbene, which was qualitatively validated by bioassay (IC50=96.6, 36.1, and 27.0μM, respectively). Additionally, a linear correlation (R(2)=0.953) is achieved for five PDE4D/ligand complexes between the predicted binding free energies and the experimental counterparts approximately estimated from their IC50 values (≈RT ln IC50). Our results imply that hydrophobic/aromatic forces are the primary factors in explaining the mechanism of inhibition by the three products. Results of the study help to understand the inhibitory mechanism of the three natural products, and thus help the discovery of novel PDE4 inhibitors from resveratrol, moracin M, and other natural products.


Conclusion
Based on Ling’s recommendation, I have ordered some Pterostilbene and I am curious to see its effects. It is another substance that might be helpful for older adults, if not for your case of autism.
It is clear that in most cases resveratrol is a substance whose effect is limited to the test tube rather than humans. As a “super-resveratrol” we should take a closer look at Pterostilbene.
Eating large amounts of fruits, vegetables and berries with anthocyanins and betacyanins is going to do you no harm and does look a way to possibly secure a long healthy future, like those Japanese centenarians in Okinawa.







Tuesday, 1 January 2019

Apple Cider Vinegar (ACV), Phloretin, Phloridzin, Chlorogenic Acid, OAT3, Autism and Colon Cancer



Today’s post is only marginally related to autism, but does again show how some common food products have potential medical benefits.




Where I currently live people have been using apple cider vinegar (ACV) as a home remedy for generations. It is the apple part, rather than the vinegar part that is most interesting. I think they should continue with this home remedy, just be careful not to dissolve the enamel on their teeth. 
Rather surprisingly we can link ACV to improving Bumetanide effectiveness in autism and the chemoprotective effect of statins.
I have read so much research about statins, I do take Atorvastatin myself. The only downside is that research shows it does increase fasting glucose levels by about 0.4 mmol/L, exactly why nobody is quite sure.
If you want to further boost the chemoprotective power of statins it seems you may need a little help from something called Phloretin. Phloretin is a phenol that occurs in apples and the leaves of apple trees.  Apple cider vinegar (ACV) is rich in Phloretin.




Viability of HCT 116 colon cancer cells 48 hours after treatment with:-

PT = Phloretin
ATST = Atorvastatin
PT+ATST =  Phloretin + Atorvastatin

The closer to zero the better the result.  

If you want to improve insulin sensitivity and reduce fasting glucose levels it looks like it is the Phloridzin, a close relative of Phloretin, in apple cider vinegar that is useful.
If you want to improve the pharmacokinetics (how a drug is absorbed, distributed, metabolized, and excreted) of bumetanide you may also be able to use apple cider vinegar (ACV).  ACV also contains Chlorogenic acid which we we saw in an earlier post inhibits excretion of bumetanide through OAT3 (Organic acid transporter 3). Chlorogenic acid is also found in coffee.
In theory ACV will cause the level of bumetanide in blood to be higher, which might increase the amount that crosses the blood brain barrier and so make bumetanide a more potent autism drug. 
One odd proposed benefit of ACV is on GERD/reflux. You might have thought taking an acid would be the last thing that would help.
You would have thought that strong alcohol (also low pH, so very acidic) would also upset people with GERD/esophagitis, but some people I know swear that it is very beneficial.
In the case of GERD/esophagitis rather bizarrely I think it is the acetic acid (low pH) that is the reason why ACV seems to help some people.  I think it may help via feedback loops to trick the body into reducing its own acid production.

The drawbacks of Apple Cider Vinegar (ACV)
The acetic acid in apple cider vinegar can damage your teeth and your esophagus.  People avoid these problems by diluting ACV in a glass of water and rinsing their mouth with clean water afterwards.

ACV can lower potassium levels and it will lower blood glucose levels, which is good thing for most people, but diabetics would need to take care. Low potassium seems to worsen behaviour and increase sound sensitivity.
The Phloridzin in ACV is likely to reduce appetite, which for most people is a good thing, but for those few who struggle to gain weight it might be an issue.
ACV should lower triglycerides significantly, which might be bad for somebody. 



The results of the present study demonstrated that the antitumor efficacy of ATST could be enhanced at a relatively low dosage through the synergistic action with PT, which suggested the potential interaction of statins with other compounds in the food matrix. This interaction affects the efficacy of statins, and may explain the controversial results obtained in prior studies regarding the associations between statin use and the risk of colon cancer-associated mortality (27,28). As the dietary composition is different for each individual, this can result in varying statin efficacy. Conversely, different statins have different antitumor effects. In six colorectal cancer cell lines, including DLD1, HT29, SW620, HCT116, LoVo and colo320, simvastatin and fluvastatin showed strong growth suppressive effects. Atorvastatin demonstrated a relatively weak growth suppressive effect, whereas no growth suppressive effect was observed with pravastatin (29). This may be another reason for the paradoxical results regarding the antitumor effects of statins.
Therefore, the p21 gene may be the potential regulatory target underlying the G2/M phase arrest following the synergistic action of ATST and PT; more in depth future investigations are warranted.
In summary, the present study demonstrated that PT and ATST produce a powerful synergistic interaction in suppressing colon cancer cell growth. This process was accomplished via the synergistic induction of apoptosis and the arrest of the cell cycle at the G2/M checkpoint, which resulted from downregulated cdc2 activation following combined treatment.



Vinegars contain several bioactive compounds that are characterized according to the type of the raw material, such as grape vinegars and apple vinegars. Liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry was used for identification and quantification of phenolic compounds. Antioxidant properties of vinegars were determined by 2,2diphenyl1picrylhydrazyl and 2,2′azinobis3ethylbenzthiazoline6sulphonic acid assays. Antimicrobial activities of vinegars were examined with an agar disc diffusion method with Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Gallic acid and chlorogenic acid were found to be the major phenolic acids accounting for the largest proportion of the total phenolic acid contents in grape vinegars and apple vinegars. Within the flavonols, quercetin3Ogalactoside and quercetin were detected as the major compounds in grape vinegars. Apple vinegars were characterized by phloridzin, phloretin and high chlorogenic acid content. Antimicrobial activity results indicated that grape vinegars exhibited higher antimicrobial activity against tested bacterial strains correlated with their higher antioxidant capacity.

In conclusion, gallic acid, tyrosol, protocatechuic acid, caftaric acid, catechin, epicatechin and syringic acid constituted the highest proportion of the total phenolic contents in GV. Chlorogenic acid, phloridzin and phloretin were found to be the major phenolic compounds in AV. With respect to antimicrobial and antioxidant activity results, GV showed higher antimicrobial and antioxidant activity than AV. With regard to phenolic composition of vinegars with their antioxidant capacities, two separate groups were obtained and characterized the vinegars with PCA based on the type of raw material. The results we obtained in this study extend our knowledge about the composition of vinegars obtained from different raw materials consumed in Turkey and allow the consumer to compare vinegar brands with the highest contents of beneficial compounds.


Coffee = chlorogenic acids  = 1,3- and 1,5-dicaffeoylquinic acid
Five compounds, 1,3- and 1,5-dicaffeoylquinic acid, ginkgolic acids (15 : 1) and (17 : 1), and epicatechin, significantly inhibited hOAT3 transport under similar conditions

3.2. Inhibition of hOAT3 by Natural Anionic Compounds and Flavonoids

Human OAT3 expressing cells showed about 4-fold greater accumulation of ES as compared to background control cells ( versus  pmol mg 10  , resp.). Similar to hOAT1, hOAT3-mediated ES uptake was completely (>96% inhibition) blocked by probenecid (Figure 4). Five of the compounds, 1,3- and 1,5-dicaffeoylquinic acid, epicatechin, and ginkgolic acids (15 : 1) and (17 : 1), significantly inhibited hOAT3-mediated transport at 50-fold excess (Figure 4). 1,3-Dicaffeoylquinic acid and ginkgolic acid (17 : 1) exhibited 41% inhibition, while 30–35% reduction of hOAT3-mediated ES uptake was observed for 1,5-dicaffeoylquinic acid, epicatechin, and ginkgolic acid (15 : 1). Catechin, 18β-glycyrrhetinic acid, and ursolic acid failed to produce significant inhibition. Based on the level of inhibition observed, values for all of these compounds would be greater than 50 μM, much higher than clinically relevant concentrations (Table 1). Therefore, further dose-response studies were not performed.


Phloridzin reduces blood glucose levels and improves lipids metabolism in streptozotocin-induced diabetic rats.

Abstract


Phloridzin is the specific and competitive inhibition of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). This property which could be useful in the management of postprandial hyperglycemia in diabetes and related disorders. Phloridzin is one of the dihydrochalcones typically contained in apples and in apple-derived products. The effect of phloridzin orally doses 5, 10, 20 and 40 mg/kg body weight on diabetes was tested in a streptozotocin-induced rat model of diabetes type 1. From beneficial effect of this compound is significant reduction of blood glucose levels and improve dyslipidemia in diabetic rats. As a well-known consequence of becoming diabetic, urine volume and water intake were significantly increased. Administration of phloridzin reduced urine volume and water intake in a dose-dependent manner. Phloretin decreases of food consumption, as well as a marked lowering in the weight. In conclusion, this compound could be proposed as an antihyperglycemic and antihyperlipidemic agent in diabetes and potential therapeutic in obesity.  

Harvard Medical School vs the BBC?
You might expect when it comes to investigating health claims about apple cider vinegar (ACV) that Harvard would give you the science and the BBC would be just superficial.
While neither actually bother to use google to find what the active constituents of ACV might be, the BBC do actually make a trial in humans and measure the results in a lab.                                                                                             


It looks like if you have high triglycerides, or indeed high blood glucose, ACV is a potentially interesting non-drug therapy.
The guys at Harvard should watch the BBC and try a little harder next time.


Conclusion
Apple cider vinegar (ACV) is one home remedy that now has some science to support it. It is cheap and easy to access.
It is perhaps not relevant to many people with autism, but does show how medicine turns a blind eye to some old treatments that were stumbled upon as being effective hundreds of years ago.
When it comes to chemoprevention, the majority of cancers in males (prostate, colon, esophagus, bladder etc) have been shown in the research to be inhibited by statins. Some people know they have a familial risk of one or more of these cancers, would it not make sense that they be informed about chemoprevention?  It is much better to avoid cancer than to have to try to treat it.  In colon cancer it appears that phloretin from ACV might even be helpful.
We also saw that people with type 2 diabetes often find the beta cells in their pancreas die and so they stop making insulin, and yet a cheap calcium channel blocker can protect those insulin-producing cells and put off the day that insulin injections are required.
I did actually borrow my “polypill” name for my son’s autism therapy from another polypill that was designed to extend the healthy life expectancy of older people. Their pill has not been a huge success.

What is needed is a personalized polypill, whether it is for people with autism or typical adults from the age of 50.
I imagine, in 50 years time, when your family doctor has your genome on file, you probably will have a personalized little pill to help you minimize the risk of developing preventable disease. 




Thursday, 2 August 2018

Turmeric/Curcumin – clinically effective in humans after all? SLC6A15 Amino Acid Transporter


Turmeric powder, only in food, modified the SLC6A15 gene

I know that most readers of this blog want to treat autism with supplements and/or diet.
Many supplements and herbal medicines do show promise in the laboratory, when tests are conducted in vitro, but very often when tests are made in humans the results are much weaker, or just not present.  Turmeric/Curcumin is a perfect example; in the test tube it has a wide range of potent benefits, but due to low absorption into humans (bioavailability) it does not show such conclusive results in human studies.
One researcher a while back did send me a study that reviewed all the turmeric/curcumin trials and it concluded that curcumin has no beneficial effect in humans.
In modern medicine anecdotal evidence does not count. Some anecdotes are genuine, but some are coincidence and some are placebo. 

Mini trial of Turmeric at three UK Universities
There is a remarkably good medical program produced by the BBC in the UK, called Trust me I’m a Doctor, where the doctor presenters team up with universities to test practical medical hypotheses.
In one study they took 100 people to assess whether turmeric has any measurable medical benefit. They teamed up with Newcastle University, Leeds University and a clever genetic researcher at University College London (UCL).

They showed that eating turmeric in your food modified a specific gene (SLC6A15) associated with certain cancers, asthma/eczema and depression.
Taking turmeric as a supplement pill or taking a placebo pill had no effect on the gene.
The researcher at UCL was measuring the epigenetic tags attached to the genes. He showed that methylation of this gene was increased by dietary turmeric. Changing the methylation of this gene will change when it turns on/off.
Anecdotally, we know that people who eat a lot of turmeric tend to have less cancer, less asthma and less eczema.
Given that this gene is also associated with depression, you might expect big eaters of turmeric to have either less, or more, depression. Probably nobody has researched this.  

SLC6 Gene Family
It is true that asthma and eczema (atopic dermatitis) are common in people with autism, but variations in the broader SLC6 family of genes are known to affect people with ADHD, Fragile X, Tourette’s and broad autism.
SLC transporters encompass approximately 350 transporters organized into 55 families. The SLC6 family is among the largest SLC families, containing 20 genes that encode a group of highly similar transporter proteins. These proteins perform transport of amino acids and amino acid derivatives into cells. 


In humans, the SLC6 family of transporters defines one of the most clinically relevant protein groups with links to orthostatic intolerance, attention deficit hyperactivity disorder (ADHD), addiction, osmotic imbalance, X-linked mental retardation , Hartnup disorder, hyperekplexia, Tourette syndrome, schizophrenia, Parkinson disease (PD), autism  and mood disorders such as depression, anxiety, obsessive compulsive disorder (OCD), and post-traumatic stress disorder (PTSD).
This review will focus on the structure-function aspects of the mammalian SLC6 transporters, their regulation by both classical as well as emerging epigenetic/transgenerational mechanisms and what impact these properties may have on disease and the use of biomarkers to detect these proteins in disease states  

The functional impact of SLC6 transporter genetic variation.


Solute carrier 6 (SLC6) is a gene family of ion-coupled plasma membrane cotransporters, including transporters of neurotransmitters, amino acids, and osmolytes that mediate the movement of their substrates into cells to facilitate or regulate synaptic transmission, neurotransmitter recycling, metabolic function, and fluid homeostasis. Polymorphisms in transporter genes may influence expression and activity of transporters and contribute to behavior, traits, and disease. Determining the relationship between the monoamine transporters and complex psychiatric disorders has been a particular challenge that is being met by evolving approaches. Elucidating the functional consequences of and interactions among polymorphic sites is advancing our understanding of this relationship. Examining the influence of environmental influences, especially early-life events, has helped bridge the gap between genotype and phenotype. Refining phenotypes, through assessment of endophenotypes, specific behavioral tasks, medication response, and brain network properties has also improved detection of the impact of genetic variation on complex behavior and disease. 

Amino acids are very important and it is not just that you need them, but you need them in the right place at the right time.
It appears that one of the many effects of defective amino acid/derivative transport into cells is on behaviour.
Improving amino acid transmission is therefore a potential therapy to correct aberrant behaviour, including depression but likely much more. 

Conclusion
Modern clinical trials are often hugely expensive, but as the BBC keeps showing with its TV series, you can carry out very meaningful research without breaking the bank.
You would think that cancer researchers would now look at the modified versions of turmeric that claim higher bioavailability and see if these pills can also modify this cancer gene, since they can easily repeat the UCL laboratory analysis. I doubt this will happen any time soon.
It has long been known that turmeric is not well absorbed, but just one teaspoon a day added to food was enough to modify the gene.
Indians have a low incidence of cancer and a high consumption of turmeric. Turmeric should particularly limit breast cancer.

Source: https://vizhub.healthdata.org/gbd-compare/

The above chart, where blue is best, shows India does well, as do some other turmeric eating countries (South Asia and the Middle East). Clearly longevity and quality of healthcare also matter, so beware Africa. Europe, Russia, Argentina, Uraguay, Oz, NZ and North American might want to up their turmeric intake.

We can say that turmeric is a potential epigenetic therapy for at least one important gene (SLC6A15) and possibly more, because turmeric does not just affect methylation. It has several other better documented epigenetic properties. 

Epigenetic regulation, which includes changes in DNA methylation, histone modifications, and alteration in microRNA (miRNA) expression without any change in the DNA sequence, constitutes an important mechanism by which dietary components can selectively activate or inactivate gene expression. Curcumin (diferuloylmethane), a component of the golden spice Curcuma longa, commonly known as turmeric, has recently been determined to induce epigenetic changes. This review summarizes current knowledge about the effect of curcumin on the regulation of histone deacetylases, histone acetyltransferases, DNA methyltransferase I, and miRNAs. How these changes lead to modulation of gene expression is also discussed. We also discuss other nutraceuticals which exhibit similar properties. The development of curcumin for clinical use as a regulator of epigenetic changes, however, needs further investigation to determine novel and effective chemopreventive strategies, either alone or in combination with other anticancer agents, for improving cancer treatment.
Only a few reports have so far investigated the effect of curcumin on DNA methylation. Molecular docking of the interaction between curcumin and DNMT1 suggested that curcumin covalently blocks the catalytic thiolate of DNMT1 to exert its inhibitory effect on DNA methylation. However, a more recent study showed no curcumin-dependent demethylation, which suggested that curcumin has little or no pharmacologically relevant activity as a DNMT inhibitor. To clarify these contradictions, more research is urgently needed.
Given that 5-azacitidine and decitabine, two FDA-approved hypomethylating agents for treating myelodysplastic syndrome, have a demonstrated ability to sensitize cancer cells to chemotherapeutic agents, it would be worthwhile to explore whether the hypomethylation effect of curcumin can also induce cancer cell chemosensitization. Interestingly, a phase 1 trial with curcumin administered several days before docetaxel in patients with metastatic breast cancer resulted in 5 partial remissions and stable disease in 3 of 8 patients. This unexpected high response might have resulted from the clever sequential delivery of these two agents, which capitalized on and maximized curcumin’s epigenetic activity for cancer treatment.


Docetaxel is a 20 year old chemotherapy drug produced using extracts from the leaves of the European yew tree, perhaps best taken with root (rhizome) of the Asian Curcuma Longa plant. 
The main mode of therapeutic action of docetaxel is the suppression of microtubule dynamic assembly and disassembly. It exhibits cytotoxic activity on breast, colorectal, lung, ovarian, gastric, renal and prostate cancer cells.