Showing posts with label Tangeretin. Show all posts
Showing posts with label Tangeretin. Show all posts

Monday, 6 March 2017

Time to update the Autism Polypill?

It has been a long time since I added anything new to my autism Polypill. This is the combination of therapies that consistently, and materially reduce the symptoms of autism in Monty, now aged 13 with ASD.

As regular readers will be aware, due to the heterogeneous nature of autism, what works wonders for one person with autism may be totally ineffective, or even make matters worse, in another person with a different type of autism.
However, once you have found one therapy that is effective you have an opportunity to identify the underlying biological dysfunction that you have stumbled upon, without the need for any fancy genetic or metabolic testing.  Then you can look for other therapies for that dysfunction and other people who fall into that sub-group of autism and see what else works for them.
I am surprised how many people do respond to some of the therapies I am highlighting in this blog. 

Time to update?

I had been expecting to add the Biogaia Protectis probiotic bacteria to the Polypill.  It does indeed work in Monty and in other readers, but prolonged use does have a problem, at least in some people.  The behavioral effects fade and, in our case, it switches from suppressing allergy to promoting allergy.
The person who originally told us about Biogaia for autism uses the more potent Biogaia Gastrus, which contains the Protectis bacteria and a second one.  She uses a high dosage and uses it three weeks on and one week off.
Like some other readers found, Monty had an immediate negative reaction to the second bacteria in Biogaia Gastrus.  We are users of Biogaia Protectis, but not every day.
A long time ago I proposed the flavonoid Tangeritin/Sytrinol as a safe PPAR gamma agonist that is also a P2Y2 receptor antagonist. Research studies have shown that the flavonoids Tangeritin and kaempferol are antagonists at P2Y2 receptors and may be of interest as potential anti-inflammatory drugs.  Robert Naviaux, from the University of California at San Diego, believes that antipurinergic therapy is a key potential strategy to treat autism and also chronic fatigue syndrome and fibromyalgia.
The broccoli sprout powder already in the Polypill is a rich source of kaempferol.
Tangeritin/Sytrinol has been shown to have sufficient bioavailability to reduce the level of cholesterol in people with high cholesterol.   


The most likely contender to enter the Polypill for everyday use is potassium bromide (KBr), it does seem to tick all the boxes. 

·        It works

·        It continues to work after longer term use

·        Mode of action is understood

·        Safety record is very well understood

·        Effective at a low dosage

·        Not expensive, about 30 cents a day.  Much less if you use bulk KBr.

KBr should be effective in people who respond to bumetanide, since they both reduce intra-cellular chloride levels, but by different mechanisms.
In people who stop responding to bumetanide, I think KBr might be a good choice.  In responders to bumetanide, increasing inflammation due to an unrelated condition, may further reduce the expression of the KCC2 transporter that lets chloride exit neurons. So the inflammation increases the level of intracellular chloride and wipes out the benefit that was being produced by the bumetanide.  The effect of the KBr will be to reduce chloride again, this time by substitution with the relatively inert bromide.
It is also possible that some people with severe autism do not respond to bumetanide because their chloride level is so high that bumetanide is not sufficiently potent.  In those people the additive effect of KBr might just tip the balance.
In some countries bumetanide tablets include potassium chloride (KCl) to compensate for potassium lost in diuresis.  The cleverer thing in autism would be to add KBr, since you benefit from the K+ and the Br-.
Due to the very long half-life, you need to take a low dosage of KBr for 4 to 6 weeks until you reach the peak level of Br- in your body.  Only then can you judge whether you are a responder or not. 
What I am considering the autism dose (8mg/Kg) is far lower than the dose used for intractable pediatric epilepsy (30-50mg/Kg), specifically to avoid the known side effects.  The main side effect at high doses is bromo-acne. Children with intractable epilepsy opt for some facial spots over seizures.
Quite possibly a higher KBr dosage would be even more effective in autism, but then you will for sure be dealing with bromo-acne.

Summertime Add-ons

One conclusion from the gene studies is that often in autism and schizophrenia there are variances in the genes linked to the immune system. So the immune–related therapies that help Monty a great deal during spring and summer may indeed be applicable to a substantial sub-group of autism. For others they are likely to be ineffective.
I am hopeful of yet another step forward this summer using the amino acid L-histidine.  Histidine is very closely related to histamine and you might think that would be the last thing that could help in those prone to allergy-driven autism flare-ups.  However in an earlier post we saw that there is a paradoxical effect when raising the level of histidine, inhibits the release of histamine from mast cells.  We also saw that histidine has an inhibitory effect on mTOR, one of the suggested common core autism pathways that was highlighted yet again in the gene studies.
L-histidine, is an essential amino acid that is not synthesized in humans.  You have to eat it.

Friday, 25 March 2016

“Type 3” Diabetes in Alzheimer’s, but maybe also in some Autism

Intranasal insulin, for cognitive enhancement in Alzheimer’s and …

Today’s post was sparked by another little experiment of mine; no, not intranasal insulin.

Recently I have been using a reduced number of therapies on Monty, aged 12 with ASD.  Some people think there are just too many pills.

I wrote many posts last year about something called PPAR gamma (Peroxisome proliferator-activated receptor gamma, PPAR-γ or PPARG, also known as the glitazone receptor).

As you can read in Wikipedia:-

PPAR-gamma has been implicated in the pathology of numerous diseases including obesity, diabetes, atherosclerosis, and cancer. PPAR-gamma agonists have been used in the treatment of hyperlipidaemia andhyperglycemia. PPAR-gamma decreases the inflammatory response of many cardiovascular cells, particularly endothelial cells. PPAR-gamma activates the PON1 gene, increasing synthesis and release of paraoxonase 1 from the liver, reducing atherosclerosis.
Many insulin sensitizing drugs (namely, the thiazolidinediones) used in the treatment of diabetes target PPARG as a means to lower serum glucose without increasing pancreatic insulin secretion.

What we found out in earlier posts that PPAR-gamma can be used to reduce microglial activation, which should turn down the body’s “immunostat”.  A key feature of many people’s autism appears to be an over-activated immune system, reflected by activated microglia.

PPAR-gamma agonists as regulators of microglial activation and brain inflammation.

The present review summarizes the several lines of evidence supporting that PPAR-gamma natural and synthetic agonists may control brain inflammation by inhibiting several functions associated to microglial activation, such as the expression of surface antigens and the synthesis of nitric oxide, prostaglandins, inflammatory cytokines and chemokines. 
Although most of the evidence comes from in vitro observations, an increasing number of studies in animal models further supports the potential therapeutic use of PPAR-gamma agonists in human brain diseases including multiple sclerosis, Parkinson's disease and Alzheimer's disease.


The potent PPAR-gamma agonist drugs like Rosiglitazone, have side effects which I think make them unsuitable for autism.  I use a flavanol called Tangeritin, in the form of a supplement called Sytrinol.

For two months we have not used Sytrinol, but yesterday Monty had one pill after lunch.

The piano lesson was great and then Monty had three hours with his Assistant, doing academic work and then some more piano practice.

Before she went home, Monty’s Assistant spent ten minutes telling me, and Monty’s big brother, just how great the afternoon had been.

“Monty was amazing today”

“When he was doing math, it was like he wasn’t autistic”

(we live in a country where autism means strict definition autism, what in the US is called severe autism)

“Did you hear how he played the piano?”

I told Monty’s brother to make a mental note of this and tell it to Mum/Mom later.

The next day the effect of Sytrinol was not as profound.

This actually is a recurring theme, the effect of various interventions is the greatest at the beginning  and then, as the body’s feedback loops get involved, the effect reduces.  

The same is true with cinnamon, another food-based intervention, that also helps people with diabetes.  The effect in (some) autism is greatest when you start.

It would be great if it was possible to keep the full initial effect of both Sytrinol and Cinnamon, and avoiding the dampening reaction caused by feedback loops.

I think if this is possible, it will be via targeting the therapy directly at the brain, rather than the entire body.  This can be achieved via the intranasal route, as used with oxytocin.

What to put in the spray?  This would be a very personalizable solution, since different people have different dysfunctions and to varying degrees.  Some possibilities might include:-

·        Insulin  (read on to learn why)
·        IGF-1
·        T3 thyroid hormone
·        TRH
·        Type 2 iodothyronine deiodinase (D2) 
·        Oxytocin
Fine tuning Cognition

It is difficult to be certain what therapy is responsible for what effect.

I recently told one researcher/parent that interventions in autism seem to take effect very quickly and so you can pretty rapidly run through a series of mini-trials to see what helps, what makes things worse and what does nothing.  Being a researcher, his view is that you need to try things for much longer.

One problem of trials lasting months is that external factors may then change, that cause behavior to change and distort the result. This is why I try to avoid trials from May to October, the allergy season.

Many people do find that some supplements help a lot for a week or two and then make things worse.  This includes things like some B vitamins and carnitine.  For other people continued use keeps giving a positive effect.

Previous Experience with Sytrinol

Monty’s assistant at school last year thought Sytrinol made him cleverer.

She also thought the PAK inhibiting propolis (BIO 30) had a similar effect.  This propolis is quite expensive and I concluded the effect was small and this might be because it just was not potent enough. 

One reader of this blog is using a much more potent PAK inhibitor, FRAX486, and some people in the US use Ivermectin.

Ivermectin is an anti-parasite drug which also happens to be a PAK inhibitor.  It is not suitable for long term use.

 Why would Sytrinol improve cognition?

I have written a lot about PPAR gamma in the past, so today has a new angle on the subject.

I did a quick check on PPAR gamma and cognition.

I was surprised what I found.



PPARγ Recruitment to Active ERK during Memory Consolidation Is Required for Alzheimer's Disease-Related Cognitive Enhancement

Cognitive impairment is a quintessential feature of Alzheimer's disease (AD) and AD mouse models. The peroxisome proliferator-activated receptor-γ (PPARγ) agonist rosiglitazone improves hippocampus-dependent cognitive deficits in some AD patients and ameliorates deficits in the Tg2576 mouse model for AD amyloidosis. Tg2576 cognitive enhancement occurs through the induction of a gene and protein expression profile reflecting convergence of the PPARγ signaling axis and the extracellular signal-regulated protein kinase (ERK) cascade, a critical mediator of memory consolidation. We therefore tested whether PPARγ and ERK associated in protein complexes that subserve cognitive enhancement through PPARγ agonism. Coimmunoprecipitation of hippocampal extracts revealed that PPARγ and activated, phosphorylated ERK (pERK) associated in Tg2576 in vivo, and that PPARγ agonism facilitated recruitment of PPARγ to pERK during memory consolidation. Furthermore, the amount of PPARγ recruited to pERK correlated with the cognitive reserve in humans with AD and in Tg2576. Our findings implicate a previously unidentified PPARγ–pERK complex that provides a molecular mechanism for the convergence of these pathways during cognitive enhancement, thereby offering new targets for therapeutic development in AD.

Cognitive Enhancementwith Rosiglitazone Links the Hippocampal PPAR gamma and ERK MAPK Signaling Pathways

Pathogenesis of Alzheimer’s and Diabetes

The pathogenesis of a disease is the biological mechanism (or mechanisms) that lead to the diseased state.

I am not suggesting that autism leads to Alzheimer’s.  (We do though know that most people with Down Syndrome will develop early Alzheimer’s in their 40s or 50s)

Many complex diseases like Alzheimer’s, cancer and indeed autism have multiple biological mechanisms behind them.

By studying the molecular pathways involved in one disease it may help understand another disease.  This is why some readers of this blog follow the cancer/oncology research.

For some time I have been intrigued at the overlap between diabetes and autism.  What is good for autism really does seem to be good for diabetes and vice versa.

Alzheimer’s Disease as Type 3 Diabetes

I was surprised to learn that some clinicians now consider Alzheimer’s Disease as Type 3 Diabetes.           

You will recall that Type 1 diabetes is when your pancreas packs up making insulin and then you have to inject yourself with supplementary insulin.

Type 2 diabetes occurs in late middle age, often linked to obesity, and is characterized by high blood sugar, insulin resistance (insulin sensitivity), and relative lack of insulin.

Insulin resistance (IR) is generally regarded as a pathological condition in which cells fail to respond to the normal actions of the hormone insulin. The body produces insulin. When the body produces insulin under conditions of insulin resistance, the cells in the body are resistant to the insulin and are unable to use it as effectively, leading to high blood sugar. Beta cells in the pancreas subsequently increase their production of insulin, further contributing to a high blood insulin level. This often remains undetected and can contribute to a diagnosis of Type 2 diabetes.  Despite the ill-effects of severe insulin resistance, recent investigations have revealed that insulin resistance is primarily a well-evolved mechanism to conserve the brain's glucose consumption by preventing muscles from taking up excessive glucose.[

Eventually Type 2 diabetes may progress to Type 1 diabetes mellitus, where the body's own immune system attacks the beta cells in the pancreas and destroys them. This means the body can no longer produce and secrete insulin into the blood and regulate the blood glucose concentration. We saw how the use of Verapamil can stop beta cells being destroyed.

Some clinicians/researchers propose that diabetes of the brain should be called Type 3 diabetes.

The research does support the view that Alzheimer’s does incorporate this brain-specific type of diabetes.  But I know wonder if this applies to some autism.

Alzheimer’s disease (AD) has characteristic histopathological, molecular, and biochemical abnormalities, including cell loss; abundant neurofibrillary tangles; dystrophic neurites; amyloid precursor protein, amyloid-β (APP-Aβ) deposits; increased activation of prodeath genes and signaling pathways; impaired energy metabolism; mitochondrial dysfunction; chronic oxidative stress; and DNA damage. Gaining a better understanding of AD pathogenesis will require a framework that mechanistically interlinks all these phenomena. Currently, there is a rapid growth in the literature pointing toward insulin deficiency and insulin resistance as mediators of AD-type neurodegeneration, but this surge of new information is riddled with conflicting and unresolved concepts regarding the potential contributions of type 2 diabetes mellitus (T2DM), metabolic syndrome, and obesity to AD pathogenesis. Herein, we review the evidence that (1) T2DM causes brain insulin resistance, oxidative stress, and cognitive impairment, but its aggregate effects fall far short of mimicking AD; (2) extensive disturbances in brain insulin and insulin-like growth factor (IGF) signaling mechanisms represent early and progressive abnormalities and could account for the majority of molecular, biochemical, and histopathological lesions in AD; (3) experimental brain diabetes produced by intracerebral administration of streptozotocin shares many features with AD, including cognitive impairment and disturbances in acetylcholine homeostasis; and (4) experimental brain diabetes is treatable with insulin sensitizer agents, i.e., drugs currently used to treat T2DM. We conclude that the term “type 3 diabetes” accurately reflects the fact that AD represents a form of diabetes that selectively involves the brain and has molecular and biochemical features that overlap with both type 1 diabetes mellitus and T2DM.

Altogether, the results from these studies provide strong evidence in support of the hypothesis that AD represents a form of diabetes mellitus that selectively afflicts the brain

The human and experimental animal model studies also showed that CNS impairments in insulin/IGF signaling mechanisms can occur in the absence of T1DM or T2DM

Altogether, the data provide strong evidence that AD is intrinsically a neuroendocrine disease caused by selective impairments in insulin and IGF signaling mechanisms, including deficiencies in local insulin and IGF production.

At the same time, it is essential to recognize that T2DM and T3DM are not solely the end results of insulin/IGF resistance and/or deficiency, because these syndromes are unequivocally accompanied by significant activation of inflammatory mediators, oxidative stress, DNA damage, and mitochondrial dysfunction, which contribute to the degenerative cascade by exacerbating insulin/ IGF resistance.

Some of the most relevant data supporting this concept have emerged from clinical studies demonstrating cognitive improvement and/or stabilization of cognitive impairment in subjects with early AD following treatment with intranasal insulin or  a PPAR agonist

Repurposing Diabetes Drugs for Brain Insulin Resistance in Alzheimer Disease

 Although many classes of drugs are now approved for management of diabetes, a primary focus of efforts to treat insulin-signaling dysfunction in AD has been the administration of exogenous insulin. There is abundant anecdotal evidence that insulin administration in people with diabetes may acutely affect mood, behavior, and cognitive performance.

Results of recent pilot studies of intranasal insulin in mild cognitive impairment (MCI) and AD have been encouraging. The most notable of these studies was a doubleblind, randomized trial of 104 older adults with MCI or AD who received placebo, low-dose (20 IU), or high-dose (40 IU) intranasal insulin for 4 months

In 2012, the U.S. National Institutes of Health allocated $7.9 million for a pivotal trial of intranasal insulin called the Study of Nasal Insulin in the Fight Against Forgetfulness (SNIFF; ClinicalTrials identifier: NCT01767909). This multicenter phase 2/3 study will be conducted by the ADCS. It is expected to recruit 250 participants with AD or MCI and to randomize them for 12 months to intranasal insulin or placebo, followed by an open-label extension of 6 months in which all participants will receive intranasal insulin. The study should be completed in late 2014.  The Study of Nasal Insulin in the Fight Against Forgetfulness (SNIFF)

In preclinical studies, TZDs improved biomarkers of AD as well as memory and cognition (31). The first pilot studies in humans were also generally encouraging, including a study by Watson et al. (32) that showed improved memory and modulation of amyloid-b levels in CSF compared with placebo after 6 months of treatment with rosiglitazone. On the basis of these preliminary studies, the maker of rosiglitazone sponsored two adequately powered phase 3 studies of rosiglitazone in AD as monotherapy or as adjunctive therapy to acetylcholinesterase inhibitors in mild to-moderate AD. These larger trials failed to replicate the positive findings of the smaller pilot studies (33).

Many explanations have been proposed for why rosiglitazone does not appear to be effective as a treatment for AD in cognitively impaired adults. Perhaps the most convincing explanation is that rosiglitazone has only modest blood-brain barrier penetration, and in fact, rosiglitazone is actively pumped out of the brain by an endogenous efflux system (34). Therefore, rosiglitazone should be expected to have only a mild insulin-sensitizing effect in the human brain.



The type 2 diabetes drugs like Rosiglitazone/Pioglitazone have been trialed in both autism and Alzheimer’s.  The results in autism with pioglitazone were positive, in Alzheimer’s they used Rosiglitazone, due to the adverse side effects of pioglitazone, and the results were very mixed.  Rosiglitazone has only modest blood-brain barrier penetration so it looks a poor choice.

In the autism trial they measured "autism" rather than cognitive function.

Effect of pioglitazone treatment on behavioral symptoms in autistic children 

In a small cohort of autistic children, daily treatment with 30 or 60 mg p.o. pioglitazone for 3–4 months induced apparent clinical improvement without adverse events. There were no adverse effects noted and behavioral measurements revealed a significant decrease in 4 out of 5 subcategories (irritability, lethargy, stereotypy, and hyperactivity). Improved behaviors were inversely correlated with patient age, indicating stronger effects on the younger patients.
Conclusion  Pioglitazone should be considered for further testing of therapeutic potential in autistic patients.

One to watch is the effect of the standard type 2 diabetes treatment Metformin on cognition in Alzheimer’s.  Nobody really knows the mode of action of Metformin.

Intranasal insulin is very interesting and not just in Alzheimer’s.

Intranasal insulin improves memory in humans

Intranasal Insulin as a Treatment for Alzheimer’s Disease: A Review of Basic Research and Clinical Evidence

I will add it to my growing list of therapies for mild cognitive impairment, in case I need it in the future.

·        Nerve growth factor (NGF) eye drops
·        Lions Mane Mushrooms (that increase NGF)
·        Cocoa Flavanols (increase cerebral blood flow)
·        Intranasal insulin or just Tangeritin/Sytrinol

I do not know if intranasal insulin would be a safe long-term therapy for children, but it would be a good diagnostic tool.  Once large numbers of older people start using intranasal insulin for cognition, we will find out how well it is tolerated.  Older people seem far more prone to side effects than younger people.

For now I think Tangeritin/Sytrinol is the best choice.

Friday, 2 October 2015

Is dysregulated IP3R calcium signaling a nexus where genes altered in ASD converge to exert their deleterious effect?

Place de l'Étoile in Paris and the avenues radiating from it.  The Arc de Triomphe in the centre would be the IP3 receptor

There are a small number of researchers in the field of autism who really do seem to know what they are talking about;  one of those is Jay Gargus, from University of California at Irvine.  He is one of the few well versed on ion channel dysfunctions (channelopathies).  Today we look at his recent paper relating to the IP3R calcium channel in something called the endoplasmic reticulum (ER).

Gargus’ recent findings relate to calcium signaling, which we have seen previously in this blog to be dysfunctional in autism.  Blocking one type of calcium channel, with Verapamil, has had a remarkable effect in the children of some of those reading this blog; this has included resolving aggressive behavior, resolving GI problems and, most recently, greatly reducing seizures.  An interesting side effect of this drug is that it protects older people from Type 2 diabetes.

We will also encounter yet another kind of stress, ER stress (endoplasmic reticulum stress), which plays a role in many disorders including Type 2 diabetes and is suggested by some Japanese researchers to play a role in autism.  Interestingly some of my pet autism interventions are known to affect ER stress.

As usual in this blog, I will skip some of the complexities, but we do need to know some new words.  The explanation is mainly courtesy of the remarkable Wikipedia.


In cell biology, an organelle is a specialized subunit within a cell that has a specific function.  Individual organelles are usually separately enclosed within their own lipid bilayers.  These lipid bilayers are also extremely important and need to be perfectly intact.  It does appear that these lipid bilayers are a little different in autism.

Components of a typical animal cell:

  1.     Nucleolus
  2.     Nucleus
  3.     Ribosome (little dots)
  4.    Vesicle
  5.    Rough endoplasmic reticulum
  6.    Golgi apparatus (or "Golgi body")
  7.    Cytoskeleton
  8.   Smooth endoplasmic reticulum
  9.   Mitochondrion
  10.   Vacuole
  11.   Cytosol (fluid that contains organelles)
  12.    Lysosome
  13.    Centrosome
  14.    Cell membrane

Endoplasmic Reticulum (ER) and ER Stress

The endoplasmic reticulum (ER) is the cellular organelle in which protein folding, calcium homeostasis, and lipid biosynthesis occur. Stimuli such as oxidative stress, ischemic insult, disturbances in calcium homeostasis, and enhanced expression of normal and/or folding-defective proteins lead to the accumulation of unfolded proteins, a condition referred to as ER stress.

Inositol trisphosphate receptor (InsP3R) or IP3R

IP3R is a Ca2+ channel activated by inositol trisphosphate (InsP3). InsP3R is very diverse among organisms, and is necessary for the control of cellular and physiological processes including cell division, cell proliferation, apoptosis, fertilization, development, behavior, learning and memory. Inositol triphosphate receptor represents a dominant second messenger leading to the release of Ca2+ from intracellular store sites.

It has a broad tissue distribution but is especially abundant in the cerebellum. Most of the InsP3Rs are found in the cell integrated into the endoplasmic reticulum.

Genes and autism

It is a widely held view that autism is essentially a genetic condition with some environmental triggers.

What is strange is that many hundreds, and later I suspect thousands, of genes are known to be implicated.  Do these lead to thousands of unique dysfunctions that ultimately manifest themselves as what we, rather clumsily, describe as “autism”?  This appears to be unlikely, more likely is that a much smaller number of downstream dysfunctions are involved.  This is behind what is suggested later by Gargus.

What I have always found odd is that siblings with idiopathic autism do NOT generally share the same genetic variations.  Most autism is called idiopathic, which means of unknown cause.  This is why I have not done any genetic testing on my son.

If siblings have Fragile X, then of course they do have the same genetic defect; the brother will likely be much more severely affected than the sister.

It occurs to me that unless the idiopathic autistic siblings live under some high voltage power cables, next to a TV transmitter or a chemical factory, the genetic testing must be missing something.  We have seen that sequencing the exome, the current “ultimate genetic test”, in fact only looks at 5% of genome.  We have also seen that in the remaining 95% are the so called enhancers and silencers of the genes in the exome.  We have also seen that overexpression of a perfect gene (as in Down syndrome) can do as much damage as a faulty gene.

My advice is to look in the remaining 95% of the genome.

Gargus, IP3R and Autism

Having completed the introduction now we can move on to the Gargus paper.

He is suggesting that a dysfunction at a specific calcium channel in the ER may be the common dysfunction triggered by “autism genes”.

So far he has only tested his idea on some single gene autisms, fragile X and tuberous sclerosis.

Autism spectrum disorder (ASD) affects 2% of children, and is characterized by impaired social and communication skills together with repetitive, stereotypic behavior. The pathophysiology of ASD is complex due to genetic and environmental heterogeneity, complicating the development of therapies and making diagnosis challenging. Growing genetic evidence supports a role of disrupted Ca2+ signaling in ASD. Here, we report that patient-derived fibroblasts from three monogenic models of ASD—fragile X and tuberous sclerosis TSC1 and TSC2 syndromes—display depressed Ca2+ release through inositol trisphosphate receptors (IP3Rs). This was apparent in Ca2+ signals evoked by G protein-coupled receptors and by photoreleased IP3 at the levels of both global and local elementary Ca2+ events, suggesting fundamental defects in IP3R channel activity in ASD. Given the ubiquitous involvement of IP3R-mediated Ca2+ signaling in neuronal excitability, synaptic plasticity, gene expression and neurodevelopment, we propose dysregulated IP3R signaling as a nexus where genes altered in ASD converge to exert their deleterious effect. These findings highlight potential pharmaceutical targets, and identify Ca2+ screening in skin fibroblasts as a promising technique for early detection of individuals susceptible to ASD.

This part I found interesting:-

Because of the ubiquitous nature of IP3R signaling and its diverse roles in almost all cells of the body, deficits in IP3-mediated Ca2+ signaling may not be limited to neurological correlates of ASD, but may also explain other characteristic ASD-associated heterogeneous symptoms, such as those of the gastrointestinal tract and immune system.  Furthermore, since the ER serves as a sensor of a host of environmental stressors, this same mechanism may contribute to the known environmental component
to the ASD phenotype, and holds the potential to reveal relevant stressors.

Is it a coincidence that the Verapamil therapy I propose also benefits autism symptoms linked to the gastrointestinal tract and immune system (mast cells/allergy) and also now seizures (hyper excitability)?  I think not,

Here is the rather easier to read press release from the University:-

UCI researchers find biomarker for autism that may aid diagnostics

Irvine, Calif., Sept. 22, 2015 — By identifying a key signaling defect within a specific membrane structure in all cells, University of California, Irvine researchers believe, they have found both a possible reliable biomarker for diagnosing certain forms of autism and a potential therapeutic target.

Dr. J. Jay Gargus, Ian Parker and colleagues at the UCI Center for Autism Research & Translation examined skin biopsies of patients with three very different genetic types of the disorder (fragile X syndrome and tuberous sclerosis 1 and 2). They discovered that a cellular calcium signaling process involving the inositol trisphosphate receptor was very much altered.

This IP3R functional defect was located in the endoplasmic reticulum, which is among the specialized membrane compartments in cells called organelles, and may underpin cognitive impairments – and possibly digestive and immune problems – associated with autism.

“We believe this finding will be another arrow in the quiver for early and accurate diagnoses of autism spectrum disorders,” said Gargus, director of the Center for Autism Research & Translation and professor of pediatrics and physiology & biophysics. “Equally exciting, it also presents a target of a molecular class already well-established to be useful for drug discovery.”

Study results appear online in Translational Psychiatry, a Nature publication.

Autism spectrum disorder is a range of complex neurodevelopmental disorders affecting 2 percent of U.S. children. The social and economic burden of ASD is enormous, currently estimated at more than $66 billion per year in the U.S. alone. Drug development has proven problematic due to the limited understanding of the underlying causes of ASD, as demonstrated by the recent failure of several much anticipated drug trials.

There are also no current, reliable diagnostic biomarkers for ASD. Genetic research has identified hundreds of genes that are involved, which impedes diagnosis and, ultimately, drug development. There simply may be too many targets, each with too small an effect.

Many of these genes associated with ASD, however, have been found to be part of the same signaling pathway, and multiple defects in this pathway may converge to produce a large functional change.

The UCI scientists detected such a convergence in the IP3R calcium channel in an organelle called the endoplasmic reticulum. Organelles are membrane structures within cells with specialized cellular functions. According to Gargus, diseases of the organelles, such as the ER, are an emerging field in medicine, with several well-recognized neurological ailments linked to two other ones, the mitochondria and lysosomes.

The IP3R controls the release of calcium from the ER. In the brain, calcium is used to communicate information within and between neurons, and it activates a host of other cell functions, including ones regulating learning and memory, neuronal excitability and neurotransmitter release – areas known to be dysfunctional in ASD.
“We propose that the proper function of this channel and its signaling pathway is critical for normal performance of neurons and that this signaling pathway represents a key ‘hub’ in the pathogenesis of ASD,” said Parker, a fellow of London’s Royal Society and UCI professor of neurobiology & behavior, who studies cellular calcium signaling.

To see if IP3R function is altered across the autism spectrum, clinical researchers at The Center for Autism & Neurodevelopmental Disorders – which is affiliated with the Center for Autism Research & Translation – are currently expanding the study and have begun to examine children with and without typical ASD for the same signaling abnormalities. These patients undergo complete behavioral diagnostic testing, and sophisticated EEG, sleep and biochemical studies are performed. This includes the sequencing of their entire genome. Also, skin cell samples are cultured and made available to lab-based researchers for functional assays.

In the area of drug discovery, scientists at the Center for Autism Research & Translation continue to probe the IP3R channel, specifically how it regulates the level of neuron excitability. The brains of people who have autism show signs of hyperexcitability, which is also seen in epilepsy, a disorder increasingly found to be associated with ASD. Cells from individuals who have autism exhibit depressed levels of calcium signaling, and this might explain why these patients experience this hyperexcitability. By restoring the release of calcium from the IP3R, the researchers believe, they can apply a “brake” on this activity.

ER Stress

As we saw above, the endoplasmic reticulum (ER) is the cellular organelle in which protein folding, calcium homeostasis, and lipid biosynthesis occur. Stimuli such as oxidative stress, ischemic insult, disturbances in calcium homeostasis, and enhanced expression of normal and/or folding-defective proteins lead to the accumulation of unfolded proteins, a condition referred to as ER stress.
We know that we usually have oxidative stress in autism and we know that calsium homeostasis is disturbed, so it is not surprising if we found ER stress in autism.

The following paper is not open access but it does suggest that ER stress leads to impaired synaptic function and specifically GABAB dysfunction.  If you respond well to Baclofen, you likely have a GABAB dysfunction.  Based on anecdotal evidence I would suggest that people with Asperger’s and anxiety might well have ER stress, since they are the ones that respond well to baclofen.

The molecular pathogenesis of ASD (autism spectrum disorder), one of the heritable neurodevelopmental disorders, is not well understood, although over 15 autistic-susceptible gene loci have been extensively studied. A major issue is whether the proteins that these candidate genes encode are involved in general function and signal transduction. Several mutations in genes encoding synaptic adhesion molecules such as neuroligin, neurexin, CNTNAP (contactin-associated protein) and CADM1 (cell-adhesion molecule 1) found in ASD suggest that impaired synaptic function is the underlying pathogenesis. However, knockout mouse models of these mutations do not show all of the autism-related symptoms, suggesting that gain-of-function in addition to loss-of-function arising from these mutations may be associated with ASD pathogenesis. Another finding is that family members with a given mutation frequently do not manifest autistic symptoms, which possibly may be because of gender effects, dominance theory and environmental factors, including hormones and stress. Thus epigenetic factors complicate our understanding of the relationship between these mutated genes and ASD pathogenesis. We focus in the present review on findings that ER (endoplasmic reticulum) stress arising from these mutations causes a trafficking disorder of synaptic receptors, such as GABA (γ-aminobutyric acid) B-receptors, and leads to their impaired synaptic function and signal transduction. In the present review we propose a hypothesis that ASD pathogenesis is linked not only to loss-of-function but also to gain-of-function, with an ER stress response to unfolded proteins under the influence of epigenetic factors.

I was surprised how much is known about ER stress, there is even a scientific journal devoted to it.

As is often the case, the literature is again full papers like the one below suggesting something, ER stress in this case, is a good drug target, but then do not suggest any drugs.

Cardiovascular disease constitutes a major and increasing health burden in developed countries. Although treatments have progressed, the development of novel treatments for patients with cardiovascular diseases remains a major research goal. The endoplasmic reticulum (ER) is the cellular organelle in which protein folding, calcium homeostasis, and lipid biosynthesis occur. Stimuli such as oxidative stress, ischemic insult, disturbances in calcium homeostasis, and enhanced expression of normal and/or folding-defective proteins lead to the accumulation of unfolded proteins, a condition referred to as ER stress. ER stress triggers the unfolded protein response (UPR) to maintain ER homeostasis. The UPR involves a group of signal transduction pathways that ameliorate the accumulation of unfolded protein by increasing ER-resident chaperones, inhibiting protein translation and accelerating the degradation of unfolded proteins. The UPR is initially an adaptive response but, if unresolved, can lead to apoptotic cell death. Thus, the ER is now recognized as an important organelle in deciding cell life and death. There is compelling evidence that the adaptive and proapoptotic pathways of UPR play fundamental roles in the development and progression of cardiovascular diseases, including heart failure, ischemic heart diseases, and atherosclerosis. Thus, therapeutic interventions that target molecules of the UPR component and reduce ER stress will be promising strategies to treat cardiovascular diseases. In this review, we summarize the recent progress in understanding UPR signaling in cardiovascular disease and its related therapeutic potential. Future studies may clarify the most promising molecules to be investigated as targets for cardiovascular diseases.

However all is not lost, a little digging uncovers several existing substances that affect ER Stress.

Atorvastatin, long part of my autism Polypill, is quite prominent.  Atorvastatin is lipophilic statin, which means it can better cross the blood brain barrier.  By chance it is the statin with the least side effects.

Statins inhibit HMG-CoA reductase, target mevalonic acid synthesis, and limit cholesterol biosynthesis. HMG-CoA reductase is expressed in the membrane of the endoplasmic reticulum (ER). Statins are prescribed to prevent cardiovascular events.
In cultured neonatal mouse cardiac myocytes the lipophilic statin atorvastatin and the hydrophilic statin pravastatin both up-regulated PDI, indicating unfolded protein response (UPR) meant to relieve ER stress. Only atorvastatin increased ER stress, growth arrest, and induced apoptosis via induction of CHOP, Puma, active Caspase-3 and PARP. Dose-dependent release of LDH was only observed in atorvastatin treated cells (1–10 μM). Hearts of mice treated with atorvastatin (5mg/kg/day for 7 months) showed protein aggresomes and autophagosomes when compared to vehicle treated controls. While atorvastatin changed mitochondrial ultrastructure, no differences in cardiac function, exercise ability or creatine kinase levels were found.
We show differential activation of ER stress by atorvastatin and pravastatin in cardiac myocytes. Our results provide a novel mechanism through which specific statins therapeutically modulate the balance of UPR/ER stress responses thereby possibly influencing cardiac remodeling.

Cerebral ischemia triggers secondary ischemia/reperfusion injury and endoplasmic reticulum stress initiates cell apoptosis. However, the regulatory mechanism of the signaling pathway remains unclear. We hypothesize that the regulatory mechanisms are mediated by the protein kinase-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α in the endoplasmic reticulum stress signaling pathway. To verify this hypothesis, we occluded the middle cerebral artery in rats to establish focal cerebral ischemia/reperfusion model. Results showed that the expression levels of protein kinase-like endoplasmic reticulum kinase and caspase-3, as well as the phosphorylation of eukaryotic initiation factor 2α, were increased after ischemia/reperfusion. Administration of atorvastatin decreased the expression of protein kinase-like endoplasmic reticulum kinase, caspase-3 and phosphorylated eukaryotic initiation factor 2α, reduced the infarct volume and improved ultrastructure in the rat brain. After salubrinal, the specific inhibitor of phosphorylated eukaryotic initiation factor 2α was given into the rats intragastrically, the expression levels of caspase-3 and phosphorylated eukaryotic initiation factor 2α in the were decreased, a reduction of the infarct volume and less ultrastructural damage were observed than the untreated, ischemic brain. However, salubrinal had no impact on the expression of protein kinase-like endoplasmic reticulum kinase. Experimental findings indicate that atorvastatin inhibits endoplasmic reticulum stress and exerts neuroprotective effects. The underlying mechanisms of attenuating ischemia/reperfusion injury are associated with the protein kinase-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α/caspase-3 pathway.

The nuclear receptor peroxisome proliferator-activated receptor γ (PPAR-γ) is an important target in diabetes therapy, but its direct role, if any, in the restoration of islet function has remained controversial. To identify potential molecular mechanisms of PPAR-γ in the islet, we treated diabetic or glucose-intolerant mice with the PPAR-γ agonist pioglitazone or with a control. Treated mice exhibited significantly improved glycemic control, corresponding to increased serum insulin and enhanced glucose-stimulated insulin release and Ca2+ responses from isolated islets in vitro. This improved islet function was at least partially attributed to significant upregulation of the islet genes Irs1, SERCA, Ins1/2, and Glut2 in treated animals. The restoration of the Ins1/2 and Glut2 genes corresponded to a two- to threefold increase in the euchromatin marker histone H3 dimethyl-Lys4 at their respective promoters and was coincident with increased nuclear occupancy of the islet methyltransferase Set7/9. Analysis of diabetic islets in vitro suggested that these effects resulting from the presence of the PPAR-γ agonist may be secondary to improvements in endoplasmic reticulum stress. Consistent with this possibility, incubation of thapsigargin-treated INS-1 β cells with the PPAR-γ agonist resulted in the reduction of endoplasmic reticulum stress and restoration of Pdx1 protein levels and Set7/9 nuclear occupancy. We conclude that PPAR-γ agonists exert a direct effect in diabetic islets to reduce endoplasmic reticulum stress and enhance Pdx1 levels, leading to favorable alterations of the islet gene chromatin architecture.

PPAR-γ agonist pioglitazone is known to have a positive effect in some autism, but it does have side effects.

Other PPAR-γ agonists include Ibuprofen and Tangeretin (sold as Sytrinol).

ER stress plays a key role in diabetes and some obesity.


So as to Gargus’ question and the tittle of this post:

Is dysregulated IP3R calcium signaling a nexus where genes altered in ASD converge to exert their deleterious effect?

The researchers are now looking at children with and without idiopathic autism to see if dysregulated IP3R calcium is indeed a reliable marker.

Given so many things can lead to behavior diagnosed as autism, I think they will just identify an IP3R cluster.  Hopefully it is a big one.  Then they can find a therapy to  release calcium from IP3R.

Where does ER stress fit into this picture?  Gargus briefly mentions stressors and unfolded protein responses:-

In addition to its role in Ca2+ homeostasis, the ER serves as a key integrator of environmental stressors with metabolism and gene expression, as it mediates a host of broad ranging cell stress responses such as the heat shock and unfolded protein responses

I think he is missing something here. 

The endoplasmic reticulum (ER) is the cellular organelle in which lipid biosynthesis occurs as well as protein folding and calcium homeostasis.

I suspect all three may be dysfunctional.  We have ample evidence of lipid abnormalities in autism and even lipid bilayer abnormalities. The Japanese research referred to above suggests protein folding dysfunction.  Note that what reduces ER stress (statins and tangeretin) also reduces cholesterol.

The good news is that plenty of therapeutic avenues already exist.

The other good news is that after 261 posts of this blog, so many pieces of the autism puzzle seem to be fitting together, not perfectly, but well enough to figure out how to treat multiple aspects of classic autism.

I did stumble across a recent quote by Ricardo Dolmetsch, formerly of Stanford and currently Global Head of Neuroscience at drug maker Novartis.  He also has a son with classic autism.  He was quoted again saying there are currently no drug treatments for core autism.  He knows a thousand times more about biology than me, but he is totally wrong to keep saying that there is nothing you can do beyond behavioral education and, if that fails, institutionalization.  I did write to him a while back and I do feel rather sorry for him, since it was his research on Timothy Syndrome that indirectly led to my Verapamil “discovery”.

Some people are just too clever (him, not me).