UA-45667900-1
Showing posts with label Sulforaphane. Show all posts
Showing posts with label Sulforaphane. Show all posts

Wednesday 21 June 2017

Broccoli sprouts for all Diabetes and some COPD


This blog is about translating existing medical research into therapy for autism, but quite often the same research has clear application to other conditions.
Very often those conditions include diabetes, a common severe form of asthma (COPD - Chronic obstructive pulmonary disease) and of course cancer.
Some readers of this blog are already applying some of these insights to improve their diabetes and indeed COPD. Type 2 diabetes is becoming very common and so more interest is being shown in better managing it. Sulforaphane from broccoli sprouts should benefit people with both Type1 and Type 2 diabetes, as more people are beginning to realize.

Cancer is a complex subject with many different molecular variants, but much of the science that needs to be applied is shared with autism. If you could master PAK1, RAS, PTEN, BCL2, P2X7, NRF2 etc you would be well placed to treat variants of both conditions. There is a surprising overlap between the existing drugs being repurposed for some autism and those being considered for some cancer (statins, metformin, propranolol, ivermectin etc.).




A chemical called sulforaphane, found in broccoli sprouts, has previously demonstrated an ability to reduce glucose levels in diabetic rats. Anders Rosengren of the University of Gothenburg in Sweden, and his colleagues wondered whether the same might be true for humans. To test the theory, his team gave 97 people with type 2 diabetes a concentrated dose of sulforaphane every day for three months, or a placebo. All but three people in the trial continued taking metformin. Those who didn’t take metformin were able to control their condition relatively well without it.

The concentration of sulforaphane given was around 100 times that found naturally in broccoli. “It was the same as eating around five kilograms of broccoli daily,” says Rosengren.

On average, those who received the broccoli extract saw their blood glucose reduce by 10 per cent more than those on the placebo. The extract was most effective in obese participants with “dysregulated” diabetes, whose baseline glucose levels were higher to start with.


Journal reference:


COPD is relevant to autism because it is epigenetic and features oxidative stress interfering in important biological processes, so there are some parallels with types of autism.

To ensure that the lungs function correctly, white blood cells called macrophages remove debris and bacteria that can build up in the lungs and cause infection.
This cleaning system is defective in smokers and people with chronic obstructive pulmonary disease (COPD) – a combination of emphysema and bronchitis – who suffer from frequent infections.

Now, researchers have figured out that a chemical pathway in the lungs called NRF2, involved in macrophage activation, is wiped out by smoking. They also found that sulforaphane, a plant chemical that is made by broccoli, cauliflower and other cruciferous vegetables when damaged, such as when chewed, can restore this pathway.

Journal reference:

Sunday 6 November 2016

Broccoli Powder without the Taste





In this blog I make a point of not promoting non-generic products, except when they have some special features.  This was the case with sustained release NAC, which does seem to be a much better product than the gelatin capsules.

In the case of broccoli powder and Sulforaphane, there was some testing done that showed most products sold in the US do not actually produce any Sulforaphane.  Small doses of broccoli powder do indeed seem to have a positive effect in some people’s autism and even on insulin sensitivity in people with diabetes.  We assume this is down to sulforaphane, but even that is not certain, there are other interesting substances in broccoli

In the Johns Hopkins research on sulforaphane they use a deep frozen product made in the lab that is not commercially available.  The research was initially in cancer, but does now extend to autism.

We saw in earlier posts that that some broccoli powders have retained the necessary enzymes needed to produce Sulforaphane in your body. You can always add back the enzyme that got destroyed in processing, using Daikon radish, which is similar to what happens in Johns Hopkins lab process.

One producer, whose product I have not used, has come out with a new product that will be interesting to people whose child does not swallow pills and hates the taste of broccoli.

The producer keeps writing to me to tell me that their product produces the most sulforaphane.  What would be nice would be independent testing of several products currently on the market.




·            “Delicious tasting, all natural blend of three of Nature’s most highly-prized plant foods; Pomegranate Juice, Coconut Water and 100% Whole Nutraceutical Grade Broccoli Sprouts”



Their broccoli powder is called EnduraCell and the more child friendly drink is called PomGenex.

You can buy their products in Australia and from their US distributor.


Anyone trying it is very welcome to leave their feedback here.








Thursday 13 October 2016

Multigenerational Epigenetic Change Stimulating Inflammatory Disease



Multigenerational transmission of nicotine-induced effects. The diagram illustrates the experimental design and findings of Rehan et al. [4]. Pregnant dams (F0 generation) are injected with nicotine or nicotine + rosiglitazone. The lungs and gonads of both male and female offspring (F1 generation) of nicotine-treated dams exhibit epigenetic changes, and the lungs show an asthma-like functional phenotype (blue nicotine-induced changes). These nicotine effects are not seen in the offspring of animals treated with nicotine + rosiglitazone. Offspring of F1 mated pairs (F2 generation) exhibit the same nicotine-induced changes to lung function as their parents, even though they were not exposed to drug.


Today’s post is again filling in some gaps in this blog to date.

A big question in autism is whether the incidence is increasing or not.  According to the now best-selling autism author Silberman, incidence is not increasing at all; it is just that diagnosis is much better than it was half a century ago.  So it is not an “autism epidemic”, rather a “diagnosis epidemic”.

I did not buy Siberman’s book and while I would like to believe he has accurately assessed the facts, in this case he really has not.

Psychiatrists have done none of us any favours by constantly changing the definition of autism and clinicians have never adequately collated data on those who match those criteria.

It does actually matter whether or not incidence of autism is increasing, because this would then stimulate research as to why.  In time this better understanding would lead to therapeutic avenues.

Being neither a professional researcher, nor a best-selling author, my level of evidence can be a little lower.  In earlier posts we saw incidence of ASD (autism, Asperger’s and PDD-NOS) is around one percent of both the child and adult population.  Many adults with Asperger’s and milder dysfunctions were never diagnosed as children, because they did not have speech delay or great cognitive difficulties.

The autism figures are always of low quality, but there is an opinion that underlying them is a real increase in severe autism, as well as the increased diagnosis of milder autism due to lowering of the diagnostic threshold.

The data I would like to see is the incidence of severe autism over the last few decades, but it does not exist.  All we have is anecdotes.

I remember asking my retired doctor mother how many patients had autism in her medical practice of about 10,000, where she saw all the children.  They did not have any and apparently until the Wakefield autism-MMR business nobody even talked about autism.

Hidden away in a group of 10,000 there “should be” about 100 with some degree of autism.  About 30 might have quite severe autism, many with MR/ID and epilepsy. 30 sounds a lot, but it is only one or two births a year.  People with severe autism live half as long as typical people, so you would not see many past middle age. I suppose it was easy to just diagnose mental retardation and then put the child into “care” when the parents could not cope.  

When a friend of mine from graduate school asked our alumni group of 200 how many had a child with autism there were six responses.  None were Asperger’s, all were strictly defined autism (SDA).

Some disease surprisingly does correlate with educational level.  I recently read that IBS/IBD is much more common among more educated people.

So my take is that hidden in all those poor quality statistics is a rise in the incidence of strictly defined autism (SDA).  Just as it is known that there has been a rise in inflammatory disease like asthma.

Asthma and COPD are really well researched and we know at least some of the reason why they have become more common.  I think the same general mechanism is behind the increase in SDA.

By understanding this mechanism you can then try and reverse it.  This is already being done in COPD research and some of the single gene autisms like Pitt Hopkins.

The mechanism is epigenetics, where you can modify when genes turn on, or turn off.  COPD is a severe disease because an environmental factor (normally smoking) has caused the body's oxidative stress response genes to be turned off.  Pitt Hopkins is caused by an insufficient expression of the TCF4 gene.  This was unlikely to have been caused by epigenetic changes, but could potentially be treated by using epigenetics to turn on the TCF4 gene.

Today’s post highlights pretty convincing research that shows how an environmental factor, smoking in this case, can cause heritable epigenetic changes.  It shows how a Grandparent smoking increases asthma incidence in the grandchildren.

Other than sending the message that smoking can affect the health of your future grandchildren, it becomes clear that many other environmental insults could also be heritable.  The accumulation of these insults over generations affects the incidence of certain diseases, particularly those complex ones often caused by multiple hits (cancer, autism etc.).
  
This makes me recall how it is theorized that epilepsy can develop as an acquired channelopathy.  We saw how the threshold for a person’s first seizure is quite high, but after the first seizure the threshold falls.  The proposed mechanism is called an acquired channelopathy.  This means that one of the many ion channels whose dysfunction is known to lead to epilepsy has been permanently disturbed.  The ion channel can now behave aberrantly with little provocation,

Ion channel diseases are classified as ‘acquired’ or ‘genetic’. Genetic ion channel disorders of the brain generally manifest as epilepsy, migraine, paroxysmal dyskinesia or episodic ataxia.

Acquired channelopathies can be caused by antibodies which target specific ion channels or by toxins which block voltage-gated ion channels. Altered transcription of ion channels may contribute to many acquired neurological ion channel disorders.

Mutations in genes which encode subunits of CNS sodium, potassium, calcium channels, GABAA and nicotinic receptors have been reported in association with various epilepsy syndromes.

While genetic (inherited) ion channel disorders may be the cause of most people’s epilepsy, it is suggested that acquired channelopathies are also involved.  Perhaps both are present?



 the “acquired channelopathy” hypothesis suggests that proepileptic channel characteristics develop during epilepsy.

In summary, cell type-specific information on epilepsy-related ion channel modifications can explain and support AED strategies. Precisely those inhibitory ion channels which appear to be effective AED targets in preclinical tests are the ones upregulated in DG GCs during TLE. These data indicate that cell-endogenous ion channel homeostasis mechanisms could be used as “channelacoid” archetypes in the search of antiepileptic strategies. In particular, the enhancement of static shunt via combined K/Cl/cation leak channel support appears to be a promising strategy.


The science, though complex, is still in its infancy.  You do wonder if acquired channelopathy cannot be caused by epigenetic changes to the genes encoding the ion channel.



Nicotine, your genes and those of your heirs

Finally, the subject of today’s post, the research showing the epigenetic effects of nicotine. In place of nicotine you could likely substitute other environment damage such as intense air pollution in cities like Beijing.  Another example below is lead pollution. 

 First the easier to read article:-


"Our results therefore indicate that the increased disease risk associated with smoking is partly caused by epigenetic changes. A better understanding of the molecular mechanism behind diseases and reduced body function might lead to improved drugs and therapies in the future," 


Now the more interesting study that shows how the effect of nicotine is passed down the generations to non-smokers.






Multigenerational transmission of nicotine-induced effects. The diagram illustrates the experimental design and findings of Rehan et al. [4]. Pregnant dams (F0 generation) are injected with nicotine or nicotine + rosiglitazone. The lungs and gonads of both male and female offspring (F1 generation) of nicotine-treated dams exhibit epigenetic changes, and the lungs show an asthma-like functional phenotype (blue nicotine-induced changes). These nicotine effects are not seen in the offspring of animals treated with nicotine + rosiglitazone. Offspring of F1 mated pairs (F2 generation) exhibit the same nicotine-induced changes to lung function as their parents, even though they were not exposed to drug.

A recent preclinical study has shown that not only maternal smoking but also grandmaternal smoking is associated with elevated pediatric asthma risk. Using a well-established rat model of in utero nicotine exposure, Rehan et al. have now demonstrated multigenerational effects of nicotine that could explain this 'grandmother effect'. F1 offspring of nicotine-treated pregnant rats exhibited asthma-like changes to lung function and associated epigenetic changes to DNA and histones in both lungs and gonads. These alterations were blocked by co-administration of the peroxisome proliferator-activated receptor-γ agonist, rosiglitazone, implicating downregulation of this receptor in the nicotine effects. F2 offspring of F1 mated animals exhibited similar changes in lung function to that of their parents, even though they had never been exposed to nicotine. Thus epigenetic mechanisms appear to underlie the multigenerational transmission of a nicotine-induced asthma-like phenotype. These findings emphasize the need for more effective smoking cessation strategies during pregnancy, and cast further doubt on the safety of using nicotine replacement therapy to reduce tobacco use in pregnant women.


More on epigenetic changes related to heart disease.





Finally the effect down the generations of lead, a known neurotoxin.



We report that the DNA methylation profile of a child’s neonatal whole blood can be significantly influenced by his or her mother’s neonatal blood lead levels (BLL). We recruited 35 mother-infant pairs in Detroit and measured the whole blood lead (Pb) levels and DNA methylation levels at over 450,000 loci from current blood and neonatal blood from both the mother and the child. We found that mothers with high neonatal BLL correlate with altered DNA methylation at 564 loci in their children’s neonatal blood. Our results suggest that Pb exposure during pregnancy affects the DNA methylation status of the fetal germ cells, which leads to altered DNA methylation in grandchildren’s neonatal dried blood spots. This is the first demonstration that an environmental exposure in pregnant mothers can have an epigenetic effect on the DNA methylation pattern in the grandchildren.



Conclusion

As regards autism, heritable epigenetic changes could well explain the increase in strictly defined autism (SDA) that cannot be explained away in terms of widening diagnostic criteria and awareness.

With respect to many diseases it is hardly surprising that they are becoming more prevalent if we accumulate the environmental insults experienced by our ancestors, via heritable epigenetic changes.  Where this will lead in future generations?

There are further studies looking at the role of PPAR gamma agonists (the rosiglitazone given to protect the mouse from epigenetic change) and HDAC inhibitors, which together can do very clever things regarding epigenetics.

You may recall the broccoli sprout extract being given by John Hopkins researchers to protect Beijing residents from the effects of severe air pollution.  The sulforaphane produced is an HDAC inhibitor.  

The mouse studies showed how to protect a mouse from epigenetic change occurring, what would be more interesting would be studies looking at reversing that change, once it has already occurred.

The only bad thing in the Mediterranean diet/lifestyle is smoking; just imagine how healthy the Greeks would be without smoking 2,000 cigarettes per adult per year, compared to 1,000 in the US.





Tuesday 23 February 2016

Therapeutic Epigenetics in Autism and Junk DNA




Today’s post takes another dip into the genetics of autism and currently existing therapies that could be re-purposed for autism.  We also see that many secrets remain beyond the 3% of your DNA that usually gets all the research attention.  The remaining 97% is not junk after all.

There was an earlier post on this blog that introduced Epigenetics.  It is not such a complicated subject, just think about it as little tags on your DNA that turn genes on/off usually when they should not be, but there remains the possibility to use epigenetics for good.  In people with under-expression of an important gene you could “tag it” and then increase its expression.

The exome is the part of your DNA that encodes the various proteins needed to build your body.  The remaining 97% of your DNA was once thought to be just junk; we saw in recent post that one part contains enhancers and silencers that control expression of the genes in the 3% that is the exome.

A recent study of gene expression in neurological conditions including autism showed just how broadly disturbed gene expression is.







(A) Consistent fold enrichments were found for each cell type across fourteen cortical and three subcortical brain regions of Alzheimer's patients. The box plots mark the distribution of cellular fold enrichments across all the brain regions examined. Asterisks mark that the fold enrichment for each cell type that was found to be significantly non-zero with p < 0.05. (B) Two independent autism studies show the same cellular phenotypes, including upregulation of glial cells and downregulation of neurons. Asterisks mark those cell types found to be significantly differential with p < 0.05 after BH correction over all groups.


Here I am making the point that even though only a handful of genes may have an identifiable dysfunction, a much broader range of genes seem to be affected, as we see in the wide range of over and under expressed genes.

While it would be logical to think about a specific dysfunction needing a therapy that targets just that gene, this appears not to be necessary.

It appears that downstream processes may be the most damaging/relevant, for example disturbances in Protein Kinase A and C (PKA and PKC) may play a key role in many cases of regressive autism, and this will feature in its own post, because it would be treatable today. 

Reduced activity of protein kinase C in the frontal cortex of subjects with regressive autism: relationship with developmental abnormalities.


Brain Region–Specific Decrease in the Activity and Expression of Protein Kinase A inthe Frontal Cortex of Regressive Autism

 

Both the above papers are by Abha and Ved Chauhan.  I put Abha on my Dean’s list long ago.  I did have a discussion with her a while back.  She is clearly a very nice person and intellectually towers over the Curemark lady (Joan Fallon) who gets $40 million to play with her pancreatic enzymes, but never publishes anything except very superficial patents.


I think for $40 million Abha and Ved could figure it all out.

PKB, otherwise known as Akt is also very relevant to some types of autism.

Tamoxifen, recently shown to reverse autism in a SHANK3 mouse model, is a PKC inhibitor.

Another epigenetic drug, Theophylline activates PKA.

Akt, also known as protein kinase B (PKB), is a central node in cell signaling downstream of growth factors, cytokines, and other cellular stimuli. Aberrant loss or gain of Akt activation underlies the pathophysiological properties of a variety of complex diseases, including type-2 diabetes and cancer.

If you could identify if a particular person was hypo/hyper in PKA, PKB and PKC, this might well open the door to an effective treatment.


Research on PKB, also known as AKT

Dysregulation of theIGF-I/PI3K/AKT/mTOR signaling pathway in autism spectrum disorders.




And a paper from the clever Japanese:-



Autism spectrum disorder is a set of neurodevelopmental disorders in terms of prevalence, morbidity and impact to the society, which is characterized by intricate behavioral phenotype and deficits in both social and cognitive functions. The molecular pathogenesis of autism spectrum disorder has not been well understood, however, it seems that PI3K, AKT, and its downstream molecules have crucial roles in the molecular pathogenesis of autism spectrum disorder. The PI3K/AKT signaling pathway plays an important role in the regulation of cell proliferation, differentiation, motility, and protein synthesis. Deregulated PI3K/AKT signaling has also been shown to be associated with the autism spectrum disorder. Discovery of molecular biochemical phenotypes would represent a breakthrough in autism research. This study has provided new insight on the mechanism of the disorder and would open up future opportunity for contributions to understand the pathophysiology


For those who favour dietary intervention:-




  
Based on the above chart curcumin should likely be good for my N=1 case of autism. Time will tell.



Consequences of upstream dysfunctions

So it might be better to consider autism as a disease of wider downstream gene expression, rather than necessarily of “faulty” genes.  Modulating the resulting wider gene expression may be much more realistic than fixing individual genes.

It is certainly plausible that the body has its own protective self-repair mechanism that might be somehow re-energized. Some people have pondered why so many highly intelligent mathematicians and computer scientists seem have relatives with autism.  The clever genes do associate with a type of autism plus ID/MR.  It was suggested that protective genetic changes might be in play, so that the people with the most genetic variance are actually the family members without the autism.

This does remain conjecture, but as more whole genome data is collected we are seeing some interesting findings.

A fascinating very recent study that looked at a group of 53 families with autism using the traditional approach of whole exome sequencing and also microarray. 

Using these methods, that are the current gold standard, the researchers found very little.  Dysfunctions in the 700 known autism genes were not detected.

However using more expensive whole genome sequencing, dysfunctions were identified in the “DNA junk” zone very close beside the known autism genes.  The researchers were then able to identify the genetic cause of 30% of the cases, a big improvement on 0%.  I expect if they looked a little harder the 30% would be higher.


“We performed whole-genome sequencing (WGS) of 208 genomes from 53 families affected by simplex autism.”

“For the majority of these families, no copy-number variant (CNV) or candidate de novo gene-disruptive single-nucleotide variant (SNV) had been detected by microarray or whole-exome sequencing (WES).

Comparing the sequences of the individuals with autism and those of their unaffected siblings, the researchers found that people with autism are more likely to have genetic variants — either single base-pair changes in the sequence or small CNVs — in swaths of DNA abutting known autism genes. But the researchers only found the variants after they restricted their search to regions of the genome already implicated in autism, and even then the statistical significance is modest.

Sequencing whole genomes could reveal the genetic cause of autism in as much as 30 percent of people for whom faster and cheaper sequencing methods come up short

“It’s increasing power even in areas that are supposed to be covered by whole-exome sequencing,” says Peixoto. “It seems that it’s clear that whole-genome sequencing will become the standard.”







One specific microRNA has strong links to autism spectrum disorder, say TSRI scientists


Epigenopathies

Many diseases have an epigenetic component. The severe progressive asthma that is COPD is a well-known example.  It appears that smoking in middle age often leads to permanent epigenetic changes that come back to haunt often then non-smokers in old age.  Even though they have not smoked for twenty years, there oxidative stress response has been permanently modified.  This results in a kind of steroid resistance, so that usually reliable drug therapies fail to work. 

It is thought that autism has an epigenetic component.  This would do some way to explaining 30-40% of the increase in prevalence in recent years that is not explained by ever widening diagnostic criteria.

Because epigenetic changes can be heritable and can be accumulated from all kinds of exposures, even simple ones like severe emotional stress and pollution, you can reconcile autism as being primarily a genetic condition even though incidence has clearly risen within one or two generations. So you can have an “epigenetic epidemic”, so to speak.


Epigenetics as a therapy

While much is written about epigenetic change being bad, it could also be good.

There are many known substances that affect gene expression; some are very target specific which is useful.

This answers a recent issue raised by a reader of this blog who did exome sequencing. What is the point of discovering a genetic dysfunction if there is no therapy? Medicine is some decades behind science, better to know what gene is affected because you well be able to affect its expression, you just need some help from Google.

Epigenetic therapy could be used to remove unwanted tags, but it could also be used to leave new ones to upregulate under-expressed genes.

Such epigenetic therapy is already a reality in COPD and is being considered for rare single autisms where one copy of the gene is not functional, so turn up the volume on the remaining copy.

As we saw in the post on epigenetics, one potential category of drugs are HDAC inhibitors, these would affect one epigenetic mechanism.

There are many such HDAC inhibitors and most have other modes of action, so you cannot be sure what is giving the noted effect.


Valproate

This epilepsy drug has numerous effects including as a HDAC inhibitor.  Given to mothers during pregnancy it can cause autism in the offspring, but when given to the affected offspring the autism can be reduced.

Valproate is given off label to treat autism even when no epilepsy is present.

As we saw in the comments section, long term valproate se can have side effects.


Sulforaphane

This substance derived from broccoli and patented by Johns Hopkins, is another HDAC inhibitor.  It also upregulates Nrf2, which turns on the oxidative response genes.  This was proposed as a COPD therapy by Professor Barnes.

We saw in a post that for Nrf2 to have its full effect there needed to be enough of a protein called DJ-1.  You can increase DJ-1 expression with cinnamon (sodium benzoate).

That was one reason to think that cinnamon would complement Sulforaphane as a therapy for both COPD and some autism.


Sodium Butyrate

Sodium Butyrate is an HDAC inhibitor that is available as a supplement. We came across it in an earlier post as a precursor to butyric acid.  Butyric acid plays a role in the permeability of the gut and the Blood Brain Barrier (BBB).  It also seems to protect from auto immune disease.

Butyrate is fed to millions of farm animals every day to increase their resistance to auto-immune disease.

Butyric acid is produced naturally in the gut by the bacteria living there, however the amount can be increased by the uses of a particular probiotic-bacteria.

This would support the uses of sodium butyrate and the Miyari 588 bacteria.

I have on my to-do-list to investigate higher doses of Miyari 588, but having read the comment by Alli that 500 mg of sodium butyrate is effective, I will try that first.  She also found higher doses ineffective, which was the same in a mouse study published last November,

The study below highlights which genes were down-regulated and which were up-regulated, the overall effect was beneficial


Sodium butyrate attenuate ssocial behavior deficits and modifies the transcription ofinhibitory/excitatory genes in the frontal cortex of an autism model.

 

The core behavioral symptoms of Autism Spectrum Disorders (ASD) include dysregulation of social communication and the presence of repetitive behaviors. However, there is no pharmacological agent that is currently used to target these core symptoms. Epigenetic dysregulation has been implicated in the etiology of ASD, and may present a pharmacological target. The effect of sodium butyrate, a histone deacetylase inhibitor, on social behavior and repetitive behavior, and the frontal cortex transcriptome, was examined in the BTBR autism mouse model. A 100 mg/kg dose, but not a 1200 mg/kg dose, of sodium butyrate attenuated social deficits in the BTBR mouse model. In addition, both doses decreased marble burying, an indication of repetitive behavior, but had no significant effect on self-grooming. Using RNA-seq, we determined that the 100 mg/kg dose of sodium butyrate induced changes in many behavior-related genes in the prefrontal cortex, and particularly affected genes involved in neuronal excitation or inhibition. The decrease in several excitatory neurotransmitter and neuronal activation marker genes, including cFos Grin2b, and Adra1, together with the increase in inhibitory neurotransmitter genes Drd2 and Gabrg1, suggests that sodium butyrate promotes the transcription of inhibitory pathway transcripts. Finally, DMCM, a GABA reverse agonist, decreased social behaviors in sodium butyrate treated BTBR mice, suggesting that sodium butyrate increases social behaviors through modulation of the excitatory/inhibitory balance. Therefore, transcriptional modulation by sodium butyrate may have beneficial effects on autism related behaviors.


  

Theophylline

Theophylline is an old asthma drug that is an HDAC inhibitor.

At low doses it is now being trialled as an epigenetic add-on therapy in COPD.  It pretty obviously does work, but data needs to be collected to measure how effective it is and what is the best dose.

It shows how the COPD researchers/clinicians like Professor Barnes are doing a good job and not frightened to experiment.

Would a similar low dose of theophylline benefit a sub-group of those with autism/schizophrenia?  I think it is quite likely.

COPD and autism/schizophrenia share the same impaired oxidative stress response.



Chronic Obstructive Pulmonary Disease (COPD) is a progressive lung disease characterised by progressive airflow limitation. In the UK, it affects around 3 million people, is the fifth leading cause of death and costs the NHS approximately £1 billion annually. Exacerbations of COPD account for 60% of NHS COPD costs and are associated with accelerated rate of lung function decline, reduced physical activity, reduced quality of life, increased mortality and increased risk of co-morbidities. COPD treatment guidelines recommend inhaled corticosteroids (ICS) to reduce exacerbations and improve lung function. However, in COPD, airway inflammation is relatively insensitive to the anti-inflammatory effects of ICS and even high doses fail to prevent exacerbations. Preclinical and pilot studies demonstrate that low dose theophylline may increase the sensitivity of the airway inflammation to ICS, and thus when used with ICS will reduce the rate of COPD exacerbation. In this study we will determine the clinical effectiveness and cost-effectiveness of adding low dose theophylline to ICS therapy in patients with COPD. The primary outcome is the number of exacerbations. The primary economic outcome is the cost-per-QALY gained during the one year treatment period. We will recruit 1424 participants from primary and secondary care across seven areas of the UK. Participants will be randomised to theophylline (200 mg once or twice daily depending on smoking status and weight) or placebo for 12 months. We will follow participants up at six and twelve months to assess the number of exacerbations. We will also collect data on adverse events, health care utilisation, quality of life and breathlessness, and lung function. Low dose theophylline is cheap (10p/day) and, if shown to make current ICS therapy more effective in a cost effective manner, it will improve the quality of life of COPD patients and reduce the burden of COPD on the NHS.


At large doses, Theophylline has long been a therapy for asthma and COPD, but as with Sodium Butyrate, it is quite possible that larger doses of Theophylline produce a different result.  In other words the epigenetic effect fortunately comes from the low dose.

Low doses mean less chance of side effects.

For example, in anyone predisposed to reflux/GERD/GORD many asthma drugs pose a problem because at the same time as opening the airways in your lungs they will relax the lower esophageal sphincter and allow stomach acid to rise upwards.

We saw in an earlier post that in some types of autism something called mGluR5 is dysfunctional in the brain. By chance mGluR5 is also involved in closing the lower esophageal sphincter.  In people with reflux/GERD/GORD a mGluR5 inhibitor was found to have promise for the management of their symptoms.


Randomised clinical trial:effects of monotherapy with ADX10059, a mGluR5 inhibitor, on symptoms and reflux events in patients with gastro-oesophageal reflux disease.




So it is not surprising that many people with autism also have reflux/GERD/GORD. 

But the dysfunction with mGluR5 in autism can be both hyper and hypo, so the therapy might be a positive allosteric modulator (PAM), or a negative allosteric modulator (NAM).  

In someone with autism + reflux/GERD/GORD  it would be reasonable to think a NAM, like ADX10059, might help both conditions.



Gene Repression and Genome Stability

There is another epigenetic process that may be disturbing gene expression in some people and may be treatable.

I have been trying to find why so many people with autism can benefit from biotin; I think I have found a plausible explanation.

“Biotinylation of histones plays a role in gene repression and repression of transposable elements, thereby maintaining genome stability”

I think in some people with autism and no clinical deficiency of biotin the continued “overdosing” of biotin might be having an effect on gene expression, bringing things a little closer to where they should be.

Rather beyond the scope of this blog, it appears that in some people the impaired genome stability, reversible with biotin(ylation), this might be a significant cancer risk.

In essence, for most people supraphysiological concentrations of biotin will do absolutely nothing, but in a sub-group it might do a lot of good.  It is epigenetic, but you do not have to understand it to benefit from it.  It is complicated.




Transposable elements such as long terminal repeats (LTR) constitute 45% of the human genome; transposition events impair genome stability. Fifty-four promoter-active retrotransposons have been identified in humans. Epigenetic mechanisms are important for transcriptional repression of retrotransposons, preventing transposition events, and abnormal regulation of genes. Here, we demonstrate that the covalent binding of the vitamin biotin to lysine-12 in histone H4 (H4K12bio) and lysine-9 in histone H2A (H2AK9bio), mediated by holocarboxylase synthetase (HCS), is an epigenetic mechanism to repress retrotransposon transcription in human and mouse cell lines and in primary cells from a human supplementation study. Abundance of H4K12bio and H2AK9bio at intact retrotransposons and a solitary LTR depended on biotin supply and HCS activity and was inversely linked with the abundance of LTR transcripts. Knockdown of HCS in Drosophila melanogaster enhances retrotransposition in the germline. Importantly, we demonstrated that depletion of H4K12bio and H2AK9bio in biotin-deficient cells correlates with increased production of viral particles and transposition events and ultimately decreases chromosomal stability. Collectively, this study reveals a novel diet-dependent epigenetic mechanism that could affect cancer risk.

Here, we provide evidence for the existence of a novel diet-dependent epigenetic mechanism that represses retrotransposons. Importantly, we demonstrated that depletion of biotinylated histones in biotin-deficient cells increases LTR transcript levels, production of viral particles, and retrotransposition events, and ultimately decreases chromosomal stability. Both biotin deficiency and supplementation are prevalent in the US. For example, moderate biotin deficiency has been observed in up to 50% of pregnant women (35,36). About 20% of the US population reports taking biotin supplements (37), producing supraphysiological concentrations of vitamin in tissues and body fluids (23,28,35). The findings presented here suggest that altered biotin status in these population subgroups might affect chromosomal stability and cancer risk. 

Biotin and biotinidase deficiency


Biotin requirements for DNA damage prevention



  

Conclusion

I never got round to writing part 2 of my epigenetics post, but my experience of HDAC inhibitors to date has been very positive.

I would be the first to admit that this is rather hit and miss.  It was only when reading the paper on potential therapies for Pitt Hopkins, that was openly musing about HDAC inhibitors, in an equally hit and miss approach, that I thought I would write further about it.

It really seems totally haphazard, because you cannot predict the effect with any level of certainty.  If there is a self-repair mechanism trying to maintain homeostasis of the genome, haphazard may be good enough.

10mg of biotin twice a day does have a mild but noticeable stabilizing effect; is this caused by better maintaining genome stability? I have no idea. 

I will try sodium butyrate and if it works I will have to establish what dose of Miyari 588 produces the same effect.  Both are used in animal feed to reduce inflammatory disease, so you are already indirectly exposed to them if you eat meat.

Theophylline should also be investigated.  This is a very well understood drug and small doses really do seem to help people with COPD.

PKA, PKB and PKC are likely at the core of most people’s autism.  Many existing therapies can modify their expression.

Whole genome sequencing, carried out at great precision, is clearly the only satisfactory genetic testing method.  The other, cheaper, methods are just missing key data and giving many false negative results, i.e. saying there are no identifiable genetic dysfunctions, when this is not true.