Showing posts with label Statins. Show all posts
Showing posts with label Statins. Show all posts

Tuesday, 1 January 2019

Apple Cider Vinegar (ACV), Phloretin, Phloridzin, Chlorogenic Acid, OAT3, Autism and Colon Cancer

Today’s post is only marginally related to autism, but does again show how some common food products have potential medical benefits.

Where I currently live people have been using apple cider vinegar (ACV) as a home remedy for generations. It is the apple part, rather than the vinegar part that is most interesting. I think they should continue with this home remedy, just be careful not to dissolve the enamel on their teeth. 
Rather surprisingly we can link ACV to improving Bumetanide effectiveness in autism and the chemoprotective effect of statins.
I have read so much research about statins, I do take Atorvastatin myself. The only downside is that research shows it does increase fasting glucose levels by about 0.4 mmol/L, exactly why nobody is quite sure.
If you want to further boost the chemoprotective power of statins it seems you may need a little help from something called Phloretin. Phloretin is a phenol that occurs in apples and the leaves of apple trees.  Apple cider vinegar (ACV) is rich in Phloretin.

Viability of HCT 116 colon cancer cells 48 hours after treatment with:-

PT = Phloretin
ATST = Atorvastatin
PT+ATST =  Phloretin + Atorvastatin

The closer to zero the better the result.  

If you want to improve insulin sensitivity and reduce fasting glucose levels it looks like it is the Phloridzin, a close relative of Phloretin, in apple cider vinegar that is useful.
If you want to improve the pharmacokinetics (how a drug is absorbed, distributed, metabolized, and excreted) of bumetanide you may also be able to use apple cider vinegar (ACV).  ACV also contains Chlorogenic acid which we we saw in an earlier post inhibits excretion of bumetanide through OAT3 (Organic acid transporter 3). Chlorogenic acid is also found in coffee.
In theory ACV will cause the level of bumetanide in blood to be higher, which might increase the amount that crosses the blood brain barrier and so make bumetanide a more potent autism drug. 
One odd proposed benefit of ACV is on GERD/reflux. You might have thought taking an acid would be the last thing that would help.
You would have thought that strong alcohol (also low pH, so very acidic) would also upset people with GERD/esophagitis, but some people I know swear that it is very beneficial.
In the case of GERD/esophagitis rather bizarrely I think it is the acetic acid (low pH) that is the reason why ACV seems to help some people.  I think it may help via feedback loops to trick the body into reducing its own acid production.

The drawbacks of Apple Cider Vinegar (ACV)
The acetic acid in apple cider vinegar can damage your teeth and your esophagus.  People avoid these problems by diluting ACV in a glass of water and rinsing their mouth with clean water afterwards.

ACV can lower potassium levels and it will lower blood glucose levels, which is good thing for most people, but diabetics would need to take care. Low potassium seems to worsen behaviour and increase sound sensitivity.
The Phloridzin in ACV is likely to reduce appetite, which for most people is a good thing, but for those few who struggle to gain weight it might be an issue.
ACV should lower triglycerides significantly, which might be bad for somebody. 

The results of the present study demonstrated that the antitumor efficacy of ATST could be enhanced at a relatively low dosage through the synergistic action with PT, which suggested the potential interaction of statins with other compounds in the food matrix. This interaction affects the efficacy of statins, and may explain the controversial results obtained in prior studies regarding the associations between statin use and the risk of colon cancer-associated mortality (27,28). As the dietary composition is different for each individual, this can result in varying statin efficacy. Conversely, different statins have different antitumor effects. In six colorectal cancer cell lines, including DLD1, HT29, SW620, HCT116, LoVo and colo320, simvastatin and fluvastatin showed strong growth suppressive effects. Atorvastatin demonstrated a relatively weak growth suppressive effect, whereas no growth suppressive effect was observed with pravastatin (29). This may be another reason for the paradoxical results regarding the antitumor effects of statins.
Therefore, the p21 gene may be the potential regulatory target underlying the G2/M phase arrest following the synergistic action of ATST and PT; more in depth future investigations are warranted.
In summary, the present study demonstrated that PT and ATST produce a powerful synergistic interaction in suppressing colon cancer cell growth. This process was accomplished via the synergistic induction of apoptosis and the arrest of the cell cycle at the G2/M checkpoint, which resulted from downregulated cdc2 activation following combined treatment.

Vinegars contain several bioactive compounds that are characterized according to the type of the raw material, such as grape vinegars and apple vinegars. Liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry was used for identification and quantification of phenolic compounds. Antioxidant properties of vinegars were determined by 2,2diphenyl1picrylhydrazyl and 2,2′azinobis3ethylbenzthiazoline6sulphonic acid assays. Antimicrobial activities of vinegars were examined with an agar disc diffusion method with Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Gallic acid and chlorogenic acid were found to be the major phenolic acids accounting for the largest proportion of the total phenolic acid contents in grape vinegars and apple vinegars. Within the flavonols, quercetin3Ogalactoside and quercetin were detected as the major compounds in grape vinegars. Apple vinegars were characterized by phloridzin, phloretin and high chlorogenic acid content. Antimicrobial activity results indicated that grape vinegars exhibited higher antimicrobial activity against tested bacterial strains correlated with their higher antioxidant capacity.

In conclusion, gallic acid, tyrosol, protocatechuic acid, caftaric acid, catechin, epicatechin and syringic acid constituted the highest proportion of the total phenolic contents in GV. Chlorogenic acid, phloridzin and phloretin were found to be the major phenolic compounds in AV. With respect to antimicrobial and antioxidant activity results, GV showed higher antimicrobial and antioxidant activity than AV. With regard to phenolic composition of vinegars with their antioxidant capacities, two separate groups were obtained and characterized the vinegars with PCA based on the type of raw material. The results we obtained in this study extend our knowledge about the composition of vinegars obtained from different raw materials consumed in Turkey and allow the consumer to compare vinegar brands with the highest contents of beneficial compounds.

Coffee = chlorogenic acids  = 1,3- and 1,5-dicaffeoylquinic acid
Five compounds, 1,3- and 1,5-dicaffeoylquinic acid, ginkgolic acids (15 : 1) and (17 : 1), and epicatechin, significantly inhibited hOAT3 transport under similar conditions

3.2. Inhibition of hOAT3 by Natural Anionic Compounds and Flavonoids

Human OAT3 expressing cells showed about 4-fold greater accumulation of ES as compared to background control cells ( versus  pmol mg 10  , resp.). Similar to hOAT1, hOAT3-mediated ES uptake was completely (>96% inhibition) blocked by probenecid (Figure 4). Five of the compounds, 1,3- and 1,5-dicaffeoylquinic acid, epicatechin, and ginkgolic acids (15 : 1) and (17 : 1), significantly inhibited hOAT3-mediated transport at 50-fold excess (Figure 4). 1,3-Dicaffeoylquinic acid and ginkgolic acid (17 : 1) exhibited 41% inhibition, while 30–35% reduction of hOAT3-mediated ES uptake was observed for 1,5-dicaffeoylquinic acid, epicatechin, and ginkgolic acid (15 : 1). Catechin, 18β-glycyrrhetinic acid, and ursolic acid failed to produce significant inhibition. Based on the level of inhibition observed, values for all of these compounds would be greater than 50 μM, much higher than clinically relevant concentrations (Table 1). Therefore, further dose-response studies were not performed.

Phloridzin reduces blood glucose levels and improves lipids metabolism in streptozotocin-induced diabetic rats.


Phloridzin is the specific and competitive inhibition of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). This property which could be useful in the management of postprandial hyperglycemia in diabetes and related disorders. Phloridzin is one of the dihydrochalcones typically contained in apples and in apple-derived products. The effect of phloridzin orally doses 5, 10, 20 and 40 mg/kg body weight on diabetes was tested in a streptozotocin-induced rat model of diabetes type 1. From beneficial effect of this compound is significant reduction of blood glucose levels and improve dyslipidemia in diabetic rats. As a well-known consequence of becoming diabetic, urine volume and water intake were significantly increased. Administration of phloridzin reduced urine volume and water intake in a dose-dependent manner. Phloretin decreases of food consumption, as well as a marked lowering in the weight. In conclusion, this compound could be proposed as an antihyperglycemic and antihyperlipidemic agent in diabetes and potential therapeutic in obesity.  

Harvard Medical School vs the BBC?
You might expect when it comes to investigating health claims about apple cider vinegar (ACV) that Harvard would give you the science and the BBC would be just superficial.
While neither actually bother to use google to find what the active constituents of ACV might be, the BBC do actually make a trial in humans and measure the results in a lab.                                                                                             

It looks like if you have high triglycerides, or indeed high blood glucose, ACV is a potentially interesting non-drug therapy.
The guys at Harvard should watch the BBC and try a little harder next time.

Apple cider vinegar (ACV) is one home remedy that now has some science to support it. It is cheap and easy to access.
It is perhaps not relevant to many people with autism, but does show how medicine turns a blind eye to some old treatments that were stumbled upon as being effective hundreds of years ago.
When it comes to chemoprevention, the majority of cancers in males (prostate, colon, esophagus, bladder etc) have been shown in the research to be inhibited by statins. Some people know they have a familial risk of one or more of these cancers, would it not make sense that they be informed about chemoprevention?  It is much better to avoid cancer than to have to try to treat it.  In colon cancer it appears that phloretin from ACV might even be helpful.
We also saw that people with type 2 diabetes often find the beta cells in their pancreas die and so they stop making insulin, and yet a cheap calcium channel blocker can protect those insulin-producing cells and put off the day that insulin injections are required.
I did actually borrow my “polypill” name for my son’s autism therapy from another polypill that was designed to extend the healthy life expectancy of older people. Their pill has not been a huge success.

What is needed is a personalized polypill, whether it is for people with autism or typical adults from the age of 50.
I imagine, in 50 years time, when your family doctor has your genome on file, you probably will have a personalized little pill to help you minimize the risk of developing preventable disease. 

Wednesday, 24 October 2018

Choose your Statin with Care in FXS, NF1 and idiopathic Autism

There are several old posts in this blog about the potential to treat some autism using statins; this has nothing to do with their ability to lower cholesterol. 

Statins are broadly anti-inflammatory but certain statins do some other particularly clever things. This led me to use Atorvastatin and Fragile-X researchers to use Lovastatin.

Fragile X is suggested by an elongated face and big/protruding ears; 
other features include MR/ID and autism.

I was recently forwarded a Scottish study showing why Simvastatin does not work in Fragile X syndrome, but Lovastatin does.
Fragile X mental retardation protein (FMR1) acts to regulate translation of specific mRNAs through its binding of eIF4E (see chart below). In people with Fragile X, they lack the FMR1 protein. Boys are worse affected than girls, because females have a second X chromosome and so a "spare" copy of the gene.

         Simvastatin does not reduce ERK1/2 or mTORC1 activation in the Fmr1-/y hippocampus.

So  ? = Does NOT inhibit

The researchers in Scotland did not test Atorvastatin in their Fragile X study.
The key is to reduce Ras. In the above graphic it questions does Simvastatin inhibit RAS and Rheb.

RASopathies have been covered in this blog. Too much of the Ras protein is a common feature of much ID/MR. Investigating RAS took me to PAK1 inhibitors and the experimental drug FRAX486. This drug was actually developed to treat Fragile X; it is now owned by Roche. At least one person is using FRAX486 to treat autism.
You might wonder why the researchers do not just try Lovastatin in humans with Fragile X.  Unfortunately, Lovastatin was never approved as a drug in Scotland, or indeed many other countries.  Some researchers just assumed they could substitute Simvastatin, which on paper looks a very similar drug and one that crosses the blood brain barrier better than Lovastatin.

The cholesterol-lowering drug lovastatin corrects neurological phenotypes in animal models of fragile X syndrome (FX), a commonly identified genetic cause of autism and intellectual disability. The therapeutic efficacy of lovastatin is being tested in clinical trials for FX, however the structurally similar drug simvastatin has been proposed as an alternative due to an increased potency and brain penetrance. Here, we perform a side-by-side comparison of the effects of lovastatin and simvastatin treatment on two core phenotypes in the Fmr1-/y mouse model. We find that while lovastatin normalizes excessive hippocampal protein synthesis and reduces audiogenic seizures (AGS) in the Fmr1-/y mouse, simvastatin does not correct either phenotype. These results caution against the assumption that simvastatin is a valid alternative to lovastatin for the treatment of FX.  

Although we propose the beneficial effect of lovastatin stems from the inhibition of ERK1/2-driven protein synthesis, it is important to note that statins are capable of affecting several biochemical pathways. Beyond the canonical impact on cholesterol biosynthesis, statins also decrease isoprenoid intermediates including farnesyl and geranylgeranyl pyrophosphates that regulate membrane association for many proteins including the small GTPases Ras, Rho and Rac [18, 46, 48, 49]. The increase in protein synthesis seen with simvastatin could be linked to altered posttranslational modification of these or other proteins. Indeed, although we see no change in mTORC1-p70S6K signaling, other studies have shown an activation of the PI3 kinase pathway that could be contributing to this effect [32]. However, our comparison of lovastatin and simvastatin shows that there is a clear difference in the correction of pathology in the Fmr1-/y model, suggesting that the impact on ERK1/2 is an important factor in terms of pharmacological treatment for FX.  There are many reasons why statins would be an attractive option for treating neurodevelopmental disorders such as FX. They are widely prescribed worldwide for the treatment of hypercholesterolemia and coronary heart disease [50], and safely used for longterm treatment in children and adults [46]. However, our study suggests that care should be taken when considering which statin should be trialed for the treatment of FX and other disorders of excess Ras. Although the effect of different statins on cholesterol synthesis has been well documented, the differential impact on Ras-ERK1/2 signaling is not well established. We show here that, contrary to lovastatin, simvastatin fails to inhibit the RasERK1/2 pathway in the Fmr1-/y hippocampus, exacerbates the already elevated protein synthesis phenotype, and does not correct the AGS phenotype. These results are significant for considering future clinical trials with lovastatin or simvastatin for FX or other disorders of excess Ras. Indeed, clinical trials using simvastatin for the treatment of NF1 have shown little promise, while trials with lovastatin show an improvement in cognitive deficits [28-30]. We suggest that simvastatin could be similarly ineffective in FX and may not be a suitable substitute for lovastatin in further clinical trials.

If you are treating Fragile X, best to start with Lovastatin and see if it helps.  In theory it might also help NF1 (Neurofibromatosis Type 1).

It looks to me that Atorvastatin also inhibits the relevant pathway and does much more besides that (PTEN, BCL2 etc)

What is Roche doing with FRAX486?

Thursday, 17 May 2018

Statins, SLOS and Hypocholesteraemia – Going Nowhere Fast

Today’s post is about cholesterol, statins and autism. There is a well-documented condition associated with autism called SLOS (Smith-Lemli-Opitz Syndrome). It is caused by mutations in the DHCR7 gene encoding the enzyme that catalyzes the final step in cholesterol biosynthesis.

Toe syndactyly (webbed toes), one symptom of SLOS

Reduced activity of the enzyme 7DHCR typically leads to low levels of cholesterol, but markedly increased levels of precursor 7DHC (and its isomer, 8DHC) in blood and tissues. Typical SLOS manifestations include intellectual disability, growth retardation, minor craniofacial anomalies, microcephaly and 2-3 toe syndactyly (webbed toes).
SLOS is rare, but some cases do get missed because you can have a DHCR7 mutation and have normal levels of cholesterol and have normal cognitive function.

Cholesterol and the blood brain barrier (BBB)
You do have a lot of cholesterol in your brain, but it does not cross the blood brain barrier (BBB), it was made in the brain.  Eating more cholesterol can have no direct effect on cholesterol levels in the brain.
The standard treatment for SLOS has long been oral cholesterol supplementation, but there is no conclusive research to show it helps. There is plenty of anecdotal evidence.

Simvastatin and SLOS
Simvastatin is a drug widely used drug to treat people with elevated cholesterol.
There has been anecdotal evidence that Simvastatin improves SLOS and recently a very thorough study was carried out to establish whether or not it really has a benefit.
In reality the study was comparing:

Simvastatin + cholesterol supplement  vs  cholesterol supplement

The study was carried out by researchers including Dr Richard Kelley (“Dr Mitochondria”) and Dr Elaine Tierney (“Dr Cholesterol”)

Currently, most SLOS patients are treated with dietary cholesterol supplementation. Although cholesterol therapy reduces serum 7-DHC concentrations to a degree, significant amounts of 7-DHC persist even after years of therapy.  Anecdotal case studies and case series support the idea that cholesterol supplementation benefits the overall well-being of SLOS patients; however, the effects of dietary cholesterol supplementation on cognitive or behavioral aspects of this disorder have not been reported by others or substantiated in a limited controlled trial. The efficacy of dietary cholesterol supplementation is probably limited by the inability of dietary cholesterol to cross the blood–brain barrier. Moreover, increased concentrations of 7-DHC or 7-DHC-derived oxysterol could have toxic effects. Specialists have hypothesized that, in patients with mild to classic SLOS, many aspects of the abnormal behavioral and cognitive phenotype could be the result of altered sterol composition in the central nervous system. Thus, interventions that ameliorate the central nervous system biochemical disturbances in SLOS are critical to understanding the pathological processes that underlie this inborn error of cholesterol synthesis and to developing effective therapies to treat the neurological deficits.

Expression of DHCR7 is regulated by SREBP2, which, when activated by low levels of cholesterol in the endoplasmic reticulum, increases the transcription of most genes of the cholesterol synthetic pathway. Having shown that DHCR7 expression is increased in SLOS fibroblasts treated with simvastatin,31 we hypothesized that the paradoxical increase in serum cholesterol could be the result of increased expression of a DHCR7 allele with residual enzymatic function, and we demonstrated that many DHCR7 alleles encode an enzyme with residual activity. Furthermore, both in vitro experiments with human  fibroblasts and in vivo experiments using hypomorphic Dhcr7T93M/delta mice support the hypothesis that increased expression of DHCR7 alleles with residual enzymatic activity can significantly improve plasma and tissue sterol concentrations. Because residual DHCR7 activity varies among patients with SLOS, this hypothesis could explain the paradoxical increase in cholesterol in some patients and the adverse reactions observed in others.

In this study we also evaluated the potential of simvastatin to alter specific aspects of the SLOS behavioral phenotype. Our secondary outcome measures were the CGI-I and ABC-C irritability scores. Although we observed no significant effect on the CGI-I, we did observe significant improvement in the ABC-C irritability score (Figure 4). This article therefore represents the first controlled study to demonstrate improved behavior in subjects with SLOS in response to a therapeutic intervention.

In summary, this study represents the first controlled trial of simvastatin therapy in SLOS and the first controlled trial demonstrating the potential of drug therapy to modulate sterol composition and to improve behavior in SLOS. We have established that treatment with simvastatin is relatively safe, can decrease DHC levels, and can improve at least one aspect of the behavioral phenotype. These data support continued efforts to identify and rigorously evaluate potential therapies that may have clinically meaningful benefits for patients with SLOS.

Plasma sterol levels

Cholesterol and dehydrocholesterol (7DHC + 8DHC) levels were measured at baseline (B), washout (W, 14 mo) as well as at 1, 3, 6, 9 and 12 months in both the placebo and simvastatin treatment phase. Plasma cholesterol levels (A, B) and DHC (C, D) decreased significantly during the simvastatin phase compared to the placebo phase. The plasma DHC/Total Sterol ratio (E, F), which was the primary outcome measure of this study, also decreased significantly. Data expressed as mean ± SEM.

Hypocholesterolemia (low cholesterol) and some Autism
Ten years ago, Tierney and Kelley published research showing that about 20% of autism is associated with very low cholesterol levels (less than the 5th centile for typical young people) but in their sample of 100, none had an abnormally increased level of 7DHC consistent with the diagnosis of SLOS or abnormal level of any other sterol precursor of cholesterol.

Tierney went on to patent cholesterol as a therapy for autism.

The present invention relates to the field of autism. More specifically, the present invention provides methods for treating individuals with autism spectrum disorder. Accordingly, in one aspect, the present invention provides methods for treating patients with autism spectrum disorder. In one embodiment, a method for treating an autism spectrum disorder (ASD) in a patient comprises the step of administering a therapeutically effective amount of cholesterol to the patient. In more specific embodiments, the ASD is autism, Asperger's disorder, pervasive developmental disorder-not otherwise specified (PDD-NOS), Rett's syndrome and childhood disintegrative disorder. In one embodiment, the patient has autism. 

Tierney has a clinical trial registered that was to start in 2009.

Three sites (Kennedy Krieger Institute [KKI], Ohio State University [OSU], and the National Institutes of Health [NIH]) will collaborate to accomplish the objectives of this study. In addition to defining the frequency of altered cholesterol homeostasis in ASD, 60 youths (20 at each site) with ASD plus hypocholesterolemia will enter a 12-week, double-blind, placebo-controlled trial immediately followed by a 12-week open-label cholesterol trial to test the efficacy of dietary cholesterol supplementation. Outcome measures will include standard tests of behavior, communication, and other autism features.

It appears that the study has not been completed.

Dr. Elaine Tierney and her colleagues are studying different metabolic disorders that can present with autism spectrum disorder through the Autism Metabolic Research Program at Kennedy Krieger. In 2000 and 2001, this group of researchers identified that Smith-Lemli-Opitz-Syndrome (SLOS) is associated with autism spectrum disorder. Since SLOS is known to be caused by a defect in the body's biosynthesis of cholesterol, SLOS may provide clues to the biochemistry of other autism spectrum disorders (ASD).

Dr. Tierney and colleagues published a paper in 2006, in the American Journal of Medical Genetics Part B (Neuropsychiatric Genetics), in which they describe finding that a subgroup of children with ASD have abnormally low cholesterol levels. The children's low cholesterol levels were apparently due to a limited ability to make cholesterol. This finding, in concert with their work with SLOS, has led them to believe that cholesterol may play a role in the cause of some cases of autism spectrum disorder. Dr. Tierney and colleagues at Kennedy Krieger, the National Institutes of Health and Ohio State University are performing a double-blind placebo-controlled study of cholesterol in individuals with ASD.

Cholesterol as a marker of inflammation
Nowadays, hypercholesterolemia and inflammation are considered as “partners in crime”.  Statins do lower bad cholesterol, but they also have broad anti-inflammatory effects.

Arteries do clog up with cholesterol, but a big part of why this happens is inflammation. Cholesterol deposits are initially a protective mechanism, like a band-aid. Treat the inflammation and cholesterol will not need to be deposited.
An altered immune response is a feature of many people’s autism, and you can measure it.
As Paul Ashwood’s research has shown, there are different immune sub-groups that people with autism fall into, and so you could treat each cluster with a specific therapy.

Cholesterol and Thyroid Hormones
Your thyroid produces hormones that control your metabolism. Metabolism is the process your body uses to convert food and oxygen into energy.

Your body converts the circulating pro-hormone T4 into the active hormone T3 locally. So, in your brain T4 has to be converted to T3. If you lack enough T4 coming from your thyroid gland or the special enzyme called D2 you are going to feel lethargic.
Your body needs thyroid hormones to make cholesterol and to get rid of the cholesterol it doesn’t need. When thyroid hormone levels are low (hypothyroidism), your body doesn’t break down and remove LDL (“bad”) cholesterol as efficiently as usual. Elevated LDL cholesterol will show up in your blood tests.
Hyperthyroidism has the opposite effect on cholesterol. It causes cholesterol levels to drop to abnormally low levels.
So best to check thyroid function and cholesterol levels.

My main interest is autism with a tendency to big heads (hyperactive growth signalling pathways) and an overactive immune system. This is the opposite of SLOS and hypocholesterolemia (low cholesterol).
For the 20% with low cholesterol, I think this is a very important biomarker.

.Is supplemental cholesterol the answer? I am not so sure it is.
Hopefully one day soon Dr Tierney, at Kennedy Krieger, will publish her results of cholesterol as a therapy for people with autism and low cholesterol.
For me it is good to see that Simvastatin was well tolerated in a 12 month long trial in children from 4 to 18 years of age. I have the very similar drug, Atorvastatin, in my Polypill.
Interestingly, in a paper that I will cover in later post, increasing HDL (good cholesterol), a feature of Atorvastatin and Simvastatin, was one marker of behavioral improvement in the Ketogenic Diet.

Thursday, 23 November 2017

Under-expression (Haploinsufficiency) of ARID1B in Autism and Corpus Callosum Abnormalities

People keep telling me that my blog is too complicated; compared to the literature it really is not. If your child has a disabling condition you really should be willing to invest all the time needed to learn about it, rather than be a passive bystander.
I think you can investigate even complex sounding genetic disorders without being an expert, which is what happens in today’s post.  

Are there 20,000 types of jeans?

As readers may recall, humans only have about 20,000 genes, far less than originally was thought. Each gene provides the instructions to make one thing, usually a protein.
For the great majority of genes we have two copies, one from Mum and one from Dad. Mitochondrial genes all come from Mum.
These genes are stored on chromosomes (like recipe books).
For 22 of these recipe books you have two copies, so if one page got damaged at least you have an undamaged version from the other book.
The 23rd pair of books is special because while females have two copies, males do not. This is the X chromosome and if a male has a problem on any page in this little book, he has a big problem, while his sister has less of a problem, because she has a spare copy. The male has a Y chromosome in place of a second copy of X. 
Examples of problems on the X chromosome:-

·        The MECP2 gene is on the X chromosome and when there is one working copy and one mutated version you have Rett syndrome and you must be female. If you were male with one mutated version you cannot survive.

·        In Fragile X syndrome a problem with the FMR1 gene means not enough not enough fragile X mental retardation protein (FMRP), which is required for normal development of the connection between neurons. Females would normally have a clean spare copy of the FMR1 gene and so show much less severe symptoms that a male with Fragile X.

Problems on chromosomes 1 to 22:-

If you have a problem in the first 22 chromosomes (recipe books), boys and girls are equal. If one page got damaged you can always look up the recipe in the other book.
In case one gene got mutated but the other copy is fine, things can work out just fine, in which case it is called haplosufficiency. You get to make enough of that protein.
In some cases you really need to use that recipe a lot; that particular protein is in big demand. One copy of that gene just is not enough. This is called  haploinsufficiency.
In most cases when the gene has a problem, it just fails to produce the intended protein. In some cases it actually produces a mutated protein, which can be worse than no protein. 

Pitt Hopkins

In Pitt Hopkins Syndrome there is a problem on chromosome 18, where you find the TCF4 gene. Not enough expression of TCF4 means not enough Transcription Factor 4;  this is an example of haploinsufficiency.
Now the reason why these rare conditions are important to many other people is that they not only affect people who happened to have a random mutation and hence a severe deficit of the protein; moderately reduced transcription of this gene, for any reason, can also result in troubling symptoms.
So in the case of the Pitt Hopkins and the gene TCF4, as was pointed out to me recently, reduced expression is a feature of some MR/ID and indeed schizophrenia. 

Instead of just a tiny number of people with Pitt Hopkins, you can see that upregulating TCF4 expression could help a lot of people.
It appears that people with Pitt Hopkins have a “clean copy” of TCF4, so it is just a case of making it work a little harder. There are ways being researched to achieve just that.
I suspect people with schizophrenia have two “clean copies” of TCF4, but for some reason have a deficiency of the protein encoded by it.
In the above paper it was shown that Protein Kinase A (PKA) plays a key role in regulating what your TCF4 gene is producing.
We have come across PKA before in this blog and we know that in regressive autism there can be a deficit of PKA. There is also PKB and PKC. All three are very important, but complicated. 

Without going into all the details you can see that if someone with Pitt Hopkins has a lack of PKA, like those with regressive autism, then he will struggle to make the most of his good copy of the gene TCF4.

It all gets very complicated, but PKA is controlled by something called cAMP. In turn cAMP is controlled by PDE. PDE4 is known to be disturbed in the brains of some people with autism.
It appears that you can activate PKA with a PDE4 inhibitor. The long established Japanese asthma drug Ibudilast is such a PDE4 inhibitor. At least one reader of this blog uses Ibudilast long term.

PDE4 inhibitors have been explored to treat various neurological conditions like schizophrenia.

So logically if you feed a PDE4 inhibitor to a Pitt Hopkins mouse, you might expect something good to happen. There now is such a mouse model.

I think I could keep that mouse quite busy. 
The point being you do not have to figure things out 100%, before starting to see what you have in your drug library might be truly beneficial.  
Some of the things in the drug library are actually in the kitchen cupboard, as we have already seen. 

Protein Kinase A
Protein kinase A (PKA) is something that is both complicated and important.
The effects of PKA activation vary with cell type.
PKA has always been considered important in formation of a memory.  Formation of a normal memory is highly sensitive to PKA levels; too much is bad and too little is bad.

ARID1B in Autism and Corpus Callosum Abnormalities
I don’t think anyone has set up a research foundation for agenesis of the Corpus Callosum (ACC), perhaps they should. 
There was a post on this a while back, prompted by meeting someone whose son has this condition. 

The Corpus Callosum is just a fancy name for what joins the two sides of the brain together. Agenesis of the Corpus Callosum (ACC) is what they call it when there is a complete or partial absence of the corpus callosum.

ACC is we are told a very rare condition, but clearly smaller corpus callosum variations are a key part of some autism. 
For example, in Pitt Hopkins a small corpus callosum is typical.
An estimated 7 percent of children with autism and macrocephaly (big heads) carry a PTEN mutation. This is associated with an enlarged corpus callosum. 
PTEN is an autism gene, but it is more usually thought of as a tumor suppressor, making it a cancer gene. In older people, losing PTEN appears to be often a first step to developing cancer; up to 70% of men with prostate cancer are estimated to have lost a copy of the PTEN gene at the time of diagnosis  ( 

PTEN is interesting because too little can allow cancer to develop, but too much may eventually result in type 2 diabetes. So, as always, it is a balance. 

Evidently from the comments in this blog, regarding tumors/cancers, people with autism are likely shifted towards the direction of lacking tumor suppressing proteins. The exception would be those born very small, or with small heads. 

ARID1B gene
ARID1B is another tumor suppressing gene, like PTEN, and like PTEN it is also an autism gene.
What I found interesting was the link between ARID1B and corpus callosum anomalies. 

ARID1B mutations are the major genetic cause of corpus callosum anomalies in patients with intellectual disability  

Corpus callosum abnormalities are common brain malformations with a wide clinical spectrum ranging from severe intellectual disability to normal cognitive function. The etiology is expected to be genetic in as much as 30–50% of the cases, but the underlying genetic cause remains unknown in the majority of cases.
Additional functional studies including a systematic search for ARID1B target genes may show how haploinsufficiency of ARID1B predispose to CC defects and to an array of cognitive defects, including severe speech defects

Several readers of this blog have highlighted a recent study:-  

We showed that cognitive and social deficits induced by an Arid1b mutation in mice are reversed by pharmacological treatment with a GABA receptor modulating drug. And, now we have a designer mouse that can be used for future studies." 

The full study:-

Clonazepam also reversed the reduced time spent in the center and reduced moving distance displayed by Arid1b-mutant mice in the open field test (Fig. 7c,d and Supplementary Fig. 14c). However, depression measures, using the forced swim test and the tail suspension test, showed no reversible effect of clonazepam in Arid1b+/− mice compared with controls (Fig. 7e,f). Our results show that clonazepam rescues impaired recognition, social memory, and elevated anxiety in Arid1b+/− mice. 
Our mouse model effectively mirrors the behavioral characteristics of intellectual disability and ASD. Arid1b+/− and Arid1bconditional-knockout mice displayed impaired spatial learning, recognition memory, and reference memory. Open field and social behavior tests also revealed decreased social interaction in the mice. Mice with mutations in genes encoding Smarca2 and Actl6b, other subunits of the BAF complex, have severe defects in social interaction and long-term memory35. Thus, this chromatin remodeling complex may provide a cellular and molecular platform for normal intellectual and social behavior. In addition, Arid1b+/− mice showed heightened levels of anxiety- and depression-related behaviors, which are common symptoms of ASD36. 
For people with intellectual disability, the prevalence of anxiety disorders has likewise been shown to be much higher. This may be due to reduced cognitive function and increased vulnerability to environmental demands. Communication difficulties may also make it more difficult for people with cognitive disabilities to deal with anxiety or fear. ARID1B haploinsufficiency may be responsible for multiple facets of characteristic ASD behaviors. Other isoforms of Arid1b that are not affected by the Arid1b mutation could exist in the mouse line. Additionally, it is possible that the genetic background for the mouse line may impact the effect of Arid1b haploinsufficiency. Thus it is important to consider allele specificity, genetic backgrounds, and knockout strategies for comparing phenotypes of other Arid1bhaploinsufficiency models.  
GABA allosteric modulators, including clonazepam, a benzodiazepine, have been used to treat seizures and anxiety. We found that clonazepam injection rescued deficits in object and social recognition and anxiety in Arid1b+/− mice. These results suggest that treatment with a benzodiazepine could be a potential pharmacological intervention for symptoms of ASD. Furthermore, our results suggest that pharmacological manipulation of GABA signaling is a potential treatment strategy for cognitive and social dysfunctions in ASD- or intellectual disability-associated disorders due to mutations in chromatin remodeling genes.  

ACC Research Foundation
If there actually was an ACC Research Foundation, they could explore whether clonazepam was therapeutic in children who have Arid1b haploinsufficiency.
While they are at it, they might want to look into Hereditary Motor and Sensory Neuropathy with agenesis of the corpus callosum (HMSN/ACC), this is caused by mutations in the potassium-chloride co-transporter 3 (SLC12A6/KCC3) gene. This I stumbled upon a long time ago, when trying to upregulate KCC2, which causes elevated intracellular chloride in many people with autism and likely many with Down Syndrome.

KCC2 is usually associated with neuropathic pain and now we see that so is KCC3. Odd reaction to pain is a well known feature of autism. The rather ill-defined condition of fibromyalgia seems common in female relatives of those with autism and I do not think this is just a coincidence. 
The interesting thing is that the research shows you can potentially upregulate KCC3 with curcumin. 

HMSN/ACC is a severe and progressive neurodegenerative disease that exhibits an early onset of symptoms. Signs of HMSN/ACC, such as hypotonia and delays in motor development skills, are noticed before 1 year of age. However, the motor abilities of patients progress slowly to 4–6 years of age, and these children are able to stand and walk with some help. This is followed by a motor deterioration that generally renders affected subjects wheelchair-dependent by adolescence. 
Accordingly, we found that curcumin relieved the ER retention of dimerized R207C in mammalian cultured cells. A diet enriched in curcumin may therefore be beneficial for the relief or delay of some of the HMSN/ACC symptoms in patients bearing the R207C mutation, including the Turkish patient described in this study (as patient has not yet reached puberty).

KCC3 defects also cause the very similar Andermann syndrome also known as agenesis of corpus callosum with neuronopathy (ACCPN).
KCC3 defects are associated with epilepsy.
My question was can you have KCC3 under-expression with partial ACC, epilepsy but no peripheral neuropathy? If this was likely, then upregulating KCC3 with curcumin might help.
The gene for KCC3 is located at chromosome 15q14. Based on my “logic of associations”, if you have ACC and epilepsy you should consider KCC3 under-expression.
I did suggest to my former classmate whose son has partial ACC and epilepsy, but no neuropathy, that it might be worth trying some curcumin. Since his son is already on anti-epileptic drugs (AEDs) my suggested effect to look for was improved cognitive function.
6 months later it does indeed, apparently, improve cognitive function.  Of course this does not establish that upregulating KCC3 had anything to do with it. It is nonetheless a nice story and another parent has realized that you can change things for the better, in spite of what neurology currently says. 
The question now is can you have both ARID1B under-expression and KCC3 under-expression, in which case you would add some clonazepam, based on the latest research. At this point you should of course go and talk to your neurologist, rather than read my blog and that was my recommendation. 

We describe a patient who presented at our epilepsy-monitoring unit with myoclonic jerks, and was diagnosed with juvenile myoclonic epilepsy (JME). Imaging of his brain revealed partial agenesis of the corpus callosum (ACC). We discuss the known genetic basis of both JME and ACC, as well as the role of the corpus callosum (CC) in primary generalized epilepsy. Both JME and ACC are associated with gene loci on chromosome 15q14. Structural brain abnormalities other than ACC, such as atrophy of the corpus callosum have been reported in patients with JME. ACC has been associated with seizures, suggesting an anti-epileptogenic role of the corpus callosum


If you have a biological diagnosis you are one big step closer to finding a therapy. Even if you have a diagnosis like partial Agenesis of the Corpus Callosum (ACC), you can go one step further and ask why. You have a 50% chance of being able to find out a specific gene that is the cause. If you know with certainty which gene is the originator of the problem, you know a lot.  I think you are then two big steps closer to a therapy.
In the case of Rett Syndrome, a really good website is run by their research foundation (Rett Syndrome Research Trust). They look like they mean business. 

If you look at the above site you might be left wondering why the much larger and better financed autism organizations look so amateur by comparison.  The big difference is that Rett Syndrome is a biological diagnosis and autism is not. In many ways calling autism a spectrum is not helpful, as the originators of the ASD concept are beginning to realize.  The precise biological dysfunctions are what matter and lumping together hundreds of miscellaneous brain dysfunctions into a pile labelled ASD may not be so clever, in fact I would call it primitive.