UA-45667900-1
Showing posts with label PANS. Show all posts
Showing posts with label PANS. Show all posts

Friday, 3 February 2017

Autism + PANDAS/PANS ? - Basal ganglia circuitry mechanism underlying some repetitive behaviour



Pu-erh, a fermented tea from Yunnan province, China.  An mGluR5 inhibitor to remedy basal ganglia circuit abnormalities?


PANDAS/PANS (Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal infections/Pediatric Acute-onset Neuropsychiatric Syndrome) are recognized disorders in North America, but nowhere else.  If you take your child to Boston Children’s Hospital and ask about PANDAS they will know what you are talking about, try this at a children’s hospital in Europe and you will be directed to the local zoo.

For those new to the subject PANDAS/PANS cause sudden onset of tics and Obsessive Compulsive Disorder (OCD) accompanied by sudden cognitive regression.

I have written about PANDAS/PANS in previous posts.



I was surprised how well documented these syndromes are and that they are treated by some mainstream physicians.

The leading researcher in the field, Susan Swedo, makes a point that PANDAS/PANS is not autism.  I think that given the ever broadening definition of what counts as autism, it should be considered as a treatable sub-type of regressive autism.

To what extent can people with classic early onset autism also have PANDAS/PANS is an open question.

Can you have both?  Well based on my n=1 experience, it looks like you can.

After a brief infection just before Christmas, Monty aged 13 with classic early onset autism, suddenly developed Tourette’s-like loud verbal tics.  This behaviour had never occurred before and erupted overnight.  Even his brother declared that Monty now has Tourette’s and when would it go away.  This is the kind of behavior that many siblings, and I suppose some parents, would find extremely embarrassing.

Having a blog jam-packed with information on autism and related issues, I thought this was another problem that I should solve myself.  


On one of Harvard’s blogs it says regarding PANDAS/PANS symptoms:-


If your child suddenly shows any of these symptoms, call your doctor as soon as you can. Then contact the International OCD Foundation to find an OCD specialist in your area. Early treatment may prevent life-long mental illness.


Well none of that advice was an option for me, but I do think that early treatment is key in neurological disorders.  This also applies to people with autism developing seizures, where I think pre-treatment can lead to never developing seizures.

So I decided I would treat Monty as if he was having PANDAS flare-up.  This entails antibiotics and a short course of steroids.  The alternative was to do nothing and hope it just all went away.

Monty very rarely has antibiotics; his immune system seems very effective and quite possibly overly effective.

Having had a severe asthma attack several years ago we have prednisone on hand.  Oral prednisone is a cheap generic steroid drug that can be used as therapy for an asthma attack that does not respond to the usual inhaler treatment.  Long term use of prednisone has significant side effects and therapy longer than a few days requires you to taper the dose.

Having started the therapy, the loud random verbal tics continued for a few days and then faded away to zero over a couple of weeks.

Would this have happened without Amoxicillin and Prednisone?  I have no means of knowing, but I agree with Monty's big brother, we do not want to have Tourette’s/PANDAS/PANS in addition to autism.

Therapy started within two days of the tics.




If your child suddenly shows any of these symptoms, call your doctor as soon as you can. Then contact the International OCD Foundation to find an OCD specialist in your area. Early treatment may prevent life-long mental illness.


and an interesting comment on that same Harvard blog:-


“PANDAS and autism is very common. My son has both. When we can get his PANDAS under control, his autism is almost nonexistent. He has been diagnosed with PDD-NOS, which is atypical autism. PANDAS antibodies can also attack other areas of the brain if the infection gets out of control. People need to be aware of this. Untreated strep would result in my son regressing further into autism. If you have looked into Saving Sammy, you’ll notice he stopped responding, like many autistics, and that some of his repetitive behaviors could be considered similar to stimming.

With my son, he also gets repetitive movements and OCD, but ADHD symptoms, major defiance and extreme outbursts, threats of violence, etc.

More doctors of autistic kids need to screen them for PANDAS.”




PANDAS and Tourette’s Syndrome

There is a debate over whether PANDAS/PANDAS is just Tourette’s syndrome.

This is where you need to know the difference between the tic type of compulsive behavior and the repetitive behavior that is stimming/stereotypy.  They are not the same and do not respond to the same therapies.

In this blog I do refer to Tourette’s-type autism.  This is one type of autism that research shows can just fade away.



 



Accumulating evidence suggests that Tourette's Syndrome (TS) – a multifactorial pediatric disorder characterized by the recurrent exhibition of motor tics and/or vocal utterances – can partly depend on immune dysregulation provoked by early repeated streptococcal infections. The natural and adaptive antibody-mediated reaction to streptococcus has been proposed to potentially turn into a pathological autoimmune response in vulnerable individuals. Specifically, in conditions of increased permeability of the blood brain barrier (BBB), streptococcus-induced antibodies have been proposed to: (i) reach neuronal targets located in brain areas responsible for motion control; and (ii) contribute to the exhibition of symptoms. This theoretical framework is supported by indirect evidence indicating that a subset of TS patients exhibit elevated streptococcal antibody titers upon tic relapses. A systematic evaluation of this hypothesis entails preclinical studies providing a proof of concept of the aforementioned pathological sequelae. These studies shall rest upon individuals characterized by a vulnerable immune system, repeatedly exposed to streptococcus, and carefully screened for phenotypes isomorphic to the pathological signs of TS observed in patients. Preclinical animal models may thus constitute an informative, useful tool upon which conducting targeted, hypothesis-driven experiments. In the present review we discuss the available evidence in preclinical models in support of the link between TS and pediatric autoimmune neuropsychiatric disorders associated with streptococcus infections (PANDAS), and the existing gaps that future research shall bridge. Specifically, we report recent preclinical evidence indicating that the immune responses to repeated streptococcal immunizations relate to the occurrence of behavioral and neurological phenotypes reminiscent of TS. By the same token, we discuss the limitations of these studies: limited evidence of behavioral phenotypes isomorphic to tics and scarce knowledge about the immunological phenomena favoring the transition from natural adaptive immunity to pathological outcomes.



Basal Ganglia and SAPAP3 gene

It is suggested that PANDAS is caused by group A beta-hemolytic streptococcal (GABHS) infections. The proposed link between infection and these disorders is that an initial autoimmune reaction to a GABHS infection produces antibodies that interfere with basal ganglia function.

Many other disorders that are often comorbid with autism are also linked to the basal ganglia, such as tics, stuttering, Tourette’s and even tardive dyskinesia caused by inappropriate treatment of autism with antipsychotics.



The following is a list of disorders that have been linked to the basal ganglia




Repetitive behaviors are common in several neuropsychiatric disorders, including obsessive-compulsive disorders and autism spectrum disorders. Guoping Feng and his team are investigating the pathological mechanisms underlying repetitive behaviors, with the aim of understanding the neural mechanisms and genetic factors that cause or contribute to autism.

The team’s previous studies in mice show that deletion of the SAPAP3 gene, which is implicated in obsessive-compulsive disorders, leads to repetitive behaviors1. The gene’s deletion leads to defective neuronal communications in the basal ganglia, a brain region known to be involved in voluntary movement.

There are two circuits within the basal ganglia, known as the direct and indirect pathways. Feng’s group generated transgenic mice in which SAPAP3 expression can be selectively turned on or off in these two pathways. They found that selective re-expression of SAPAP3 in the direct pathway of the basal ganglia completely reverses the repetitive behavior seen in mice lacking SAPAP3. This effect is not seen in the indirect pathway, indicating that the two pathways play different roles in the pathogenesis of repetitive behavior.

Feng’s group also studied SHANK3, which interacts with SAPAP3 protein in the basal ganglia. SHANK3 mutations are strongly linked to an autism spectrum disorder called Phelan-McDermid syndrome2. The researchers found that deletion of the SHANK3 gene in mice leads to repetitive behaviors similar to those seen in mice lacking SAPAP33. Importantly, the researchers discovered similar neuronal communication defects in the basal ganglia of SHANK3 and SAPAP3 mutant mice. Together, these results provide strong evidence for a common basal ganglia circuitry mechanism underlying repetitive behavior4





In the new study, Calakos’s team found that overactivity of a single type of receptor for neurotransmitters -- mGluR5, found in a brain region involved in compulsive behaviors -- was the major driver for the abnormal behaviors. When researchers gave Sapap3-lacking mice a chemical that blocks mGluR5, the grooming and anxiety behaviors abated.

“The reversibility of the symptoms was immediate -- on a minute time frame,” Calakos said. In contrast, the original study describing Sapap3-lacking mice found that antidepressants could help treat symptoms but on the time scale of weeks, as is typical with these drugs in patients.

Intriguingly, by taking normal laboratory mice and giving them a drug that boosted mGluR5 activity, Calakos’s team could instantaneously recreate the same excessive grooming and anxiety behaviors they saw in the Sapap3-lacking mice.

The researchers found that without a functioning Sapap3 protein, the mGluR5 receptor is always on. That, in turn, makes the brain regions involved in compulsion overactive. In particular, a group of neurons that give the “green light” for an action, like face-washing, is working overtime. (These same neurons can promote a habit, such as eating sweets, according to a study published by Calakos’s team earlier this year.)

Calakos said that mGluR5 should be considered for the treatment of compulsive behaviors. “But which people and which compulsive behaviors? We don’t know yet,” she added. 




Conclusions

These findings demonstrate a causal role for increased mGluR5 signaling in driving striatal output abnormalities and behaviors with relevance to OCD and show the tractability of acute mGluR5 inhibition to remedy circuit and behavioral abnormalities.


Diagnostic Tests for PANDAS/PANS

Madeleine Cunningham, who used to work at the NIMH researching PANDAS with Susan Swedo, went off to set up a company to promote her “Cunningham Panel” of tests.

The Panel consists of 5 tests which measure circulating levels of autoantibodies directed against specific neuronal antigens in the patient including: Dopamine D1 Receptor (DRD1), Dopamine D2L Receptor (DRD2L), Lysoganglioside – GM1 and Tubulin. The 5th assay targets CaM Kinase II, a key enzyme involved in the up regulation of many neurotransmitters (dopamine, epinephrine, norepinephrine).




In the United States, 6.4 million children have received an ADHD diagnosis; 50% of all children with the disorder are diagnosed by age 6. Meanwhile, one million children have been diagnosed with Autism Spectrum Disorder ¹ and 500,000 children are living in the U.S. with OCD.
Identifying the underlying cause of these symptoms is imperative and answering the following question could change the course of treatment: ‘Could an infection be causing my child’s symptoms?’ Children may be misdiagnosed with a primary psychiatric disorder and receive psychotropic medications to treat the symptoms. But if the symptoms are due to an infection-triggered autoimmune response, the root cause of the behaviors must be addressed. Treatment must include eradicating the infection (if possible) and addressing the immune dysfunction.

                                                                                       

Treatments for PANDAS

Treatments for PANDAS are not yet well-studied as this condition has only recently been identified. Conventional treatments may include oral antibiotics to eradicate a Streptococcal infection, and prophylactic antibiotics to prevent recurrence. Oral prednisone is also used as a potent anti-inflammatory to relieve inflammation of the brain and prevent damage. Another therapy known as intravenous immunoglobulin (IVIG) is being investigated.

Intravenous glutathione, a potent antioxidant, can be used to protect the brain from being damaged from inflammation.








Time for Tea?

If you read the SAPAP3 research above, a totally different type of therapy might also improve OCD disorders stemming from the basal ganglia; you would try inhibiting metabotropic glutamate receptor 5 (mGluR5).

Given many people’s aversion to drugs, they might want to brew up some Pu-erh tea.  This type of tea is widely used for weight loss.  It should also reduce your cholesterol.





Glutamate is one of the major excitatory neurotransmitters of the CNS and is essential for numerous key neuronal functions. However, excess glutamate causes massive neuronal death and brain damage owing to excitotoxicity via the glutamate receptors. Metabotropic glutamate receptor 5 (mGluR5) is one of the glutamate receptors and represents a promising target for studying neuroprotective agents of potential application in neurodegenerative diseases. Pu-erh tea, a fermented tea, mainly produced in Yunnan province, China, has beneficial effects, including the accommodation of the CNS. In this study, pu-erh tea markedly decreased the transcription and translation of mGluR5 compared to those by black and green teas. Pu-erh tea also inhibited the expression of Homer, one of the synaptic scaffolding proteins binding to mGluR5. Pu-erh tea protected neural cells from necrosis via blocked Ca2+ influx and inhibited protein kinase C (PKC) activation induced by excess glutamate. Pu-erh tea relieved rat epilepsy induced by LiCl-pilocarpine in behavioural and physiological assays. Pu-erh tea also decreased the expression of mGluR5 in the hippocampus. These results show that the inhibition of mGluR5 plays a role in protecting neural cells from glutamate. The results also indicate that pu-erh tea contains biological compounds binding transcription factors and inhibiting the expression of mGluR5 and identify pu-erh tea as a novel natural neuroprotective agent.



Scientific studies report that consumption of pu-erh tea leaves significantly suppressed the expression of fatty acid synthase (FAS) in the livers of rats; gains in body weight, levels of triacylglycerol, and total cholesterol were also suppressed. The compositions of chemical components found to have been responsible for these effects (catechins, caffeine, and theanine) varied dramatically between pu-erh, black, oolong, and green teas.


Pu-erh tea supplementation suppresses fatty acid synthase expression in the rat liver through downregulating Akt and JNK signalings as demonstrated in human hepatoma HepG2 cells.

Fatty acid synthase (FAS) is a key enzyme of lipogenesis. Overexpression of FAS is dominant in cancer cells and proliferative tissues. The expression of FAS in the livers of rats fed pu-erh tea leaves was significantly suppressed. The gains in body weight, levels of triacylglycerol, and total cholesterol were also suppressed in the tea-treated rats. FAS expression in hepatoma HepG2 cells was suppressed by the extracts of pu-erh tea at both the protein and mRNA levels. FAS expression in HepG2 cells was strongly inhibited by PI3K inhibitor LY294002 and JNK inhibitor II and slightly inhibited by p38 inhibitor SB203580 and MEK inhibitor PD98059, separately. Based on these findings, we suggest that the suppression of FAS in the livers of rats fed pu-erh tea leaves may occur through downregulation of the PI3K/AKt and JNK signaling pathways. The major components of tea that have been demonstrated to be responsible for the antiobesity and hypolipidemic effects are catechins, caffeine, and theanine. The compositions of catechins, caffeine, and theanine varied dramatically in pu-erh, black, oolong, and green teas. The active principles and molecular mechanisms that exerted these biological effects in pu-erh tea deserve future exploration.



Conclusion

Sudden onset tic disorder associated with loss of cognitive function does seem to be a distinct dysfunction. Fortunately it is being well researched.

Whether antibodies, due to an infection, crossing the blood brain barrier and causing chronic inflammation in the basal ganglia is the cause remains unproven, but seems plausible.

Exactly what kinds of infections can trigger this response is an open question.  The people selling the PANDAS/PANS diagnostic test, the Cunningham panel, suggest that a wide range of both viral and bacterial infections can trigger this reaction.  As is often the case, there may be a case of some over diagnosis and very expensive use of IVIG therapy.  No test will be perfect because the area is highly subjective.

A recent paper reconfirmed the view that both the blood brain barrier and the intestinal barrier can be compromised in autism.





This suggests that all kinds of things might be crossing the blood brain barrier.

As we have seen, autism seems to be usually caused by multiple hits, rather than a single gene dysfunction, but we have also seen that in cases of severe autism there can be a step-change regression from earlier moderate autism to severe autism.  I called this double-tap autism, so as not to confuse with multiple hits. 

In double-tap autism things usually start out quite well, with good response to behavioral therapy, in early years, and then take a nose dive and can spiral completely out of control leading to institutionalization.

We have seen cases where the second tap/event is immune related and others where it is the onset of seizures around puberty, but usually the trigger remains unidentified.

I would imagine that PANDAS/PANS could also be such a second tap/event.  The issue is not just the tics/OCD but the associated loss of cognitive function. Given that immediate intervention has been shown to be highly effective in PANDAS/PANS, before the condition has become chronic and much less responsive, it would be wise for more people to be aware of what can be done.

Will some Chinese tea affect mGluR5 in a good way?  It remains to be seen; these receptors are present in different parts of the brain where they have opposing functions.  mGluR5 is a target of autism research at MIT and was covered in earlier posts. Here is another link:-




It may be necessary to have a brain region specific mGluR5 inhibitor.

We can add Pu-erh tea to the growing list of things that reduce cholesterol - cinnamon, pantethine (active form of vitamin B5), sytrinol etc.  Interestingly 600mg of pantethine lowers cholesterol but increases coenzyme Q10 (statins reduce coenzyme Q10).  Pu-erh tea actually has some naturally lovastatin in it, but that may not be its main mode of lowering cholesterol .






Friday, 27 November 2015

Inflammatory Response to GAS (Group A Strep) and Dysmaturational Syndrome (Tourette’s Syndrome with Autism “Recovery” by 6 Years Old)



Michele Zappella was Head of the Department of Child Neuropsychiatry
 at Siena Hospital from 1973 to 2006


Today’s post is the one I mentioned some time ago about odd behavioral reactions to Group A Streptococcus.  It does veer off to Italy and Tourette’s Syndrome and the interesting sounding Dysmaturational Syndrome, which probably accounts for many of those autism “recovery” stories that are used to support some pretty odd therapies.

Several readers of this blog have noticed that exposure to Group A Streptococcus causes their child’s autism to worsen.  Quotes range from facial grimacing, to raving like a lunatic.

Much has been written about the conditions PANDAS and PANS.  The proposed mechanism behind PANDAS/PANS is highly disputed, with some strong evidence showing it not to be valid.

What is clear is that in some people, following a strep infection, they change overnight from completely normal to something quite different.  This is the PANDAS/PANS phenomenon.

In people with autism, it is possible that a different mechanism is in play, rather similar to the allergy induced behavioral change that has been discussed in depth in this blog and that is triggered by mast cell degranulation.

Parents naturally assume that if their child has autism and strep infections make it worse, that they must have PANDAS/PANS.  Maybe they do, but there is another completely different explanation.


TICS, OCD and Stereotypy

There are only a limited number of behavioral responses a human can make, whereas there seem to be an endless list of possible biological or genetic dysfunctions.  The end result is that entirely different dysfunctions can lead to apparently similar behaviours and a lot of confusion and misdiagnoses.

In autism, Obsessive Compulsive Disorder (OCD) and Tourette’s Syndrome common features are repetitive behaviors, physical tics and stereotypy. These three disorders are diagnosed solely based on observation, rather than any biological testing.

The underlying biological causes for these behaviors are not understood and there are likely many different causes, some overlapping, between the three observational diagnoses.

We can also work backwards from a therapeutic perspective and see what therapies work in each condition.  One well documented compulsive behavior is trichotillomania, which is when people compulsively pull out their own hair.

Many people with this type of OCD find near complete relief from the same therapy that benefits people with autism and stereotypy.  Both groups respond to the antioxidant NAC and their compulsive behaviors abate.

I recently noted that some people with trichotillomania find Inositol also makes these compulsive behaviors abate.  A very small trial showed that Inositol did not help autism.

I think it is fair to say that there is some overlap between what is causing stereotypy and what is causing some OCD.

When it comes to tics, there seems to be an endless list of causes.  Numerous conditions are known to cause foot flapping and restless leg syndrome.

Breath holding is a common problem in Rett Syndrome, it occurs in classic autism, but it is also seen as a tic disorder.

Most people with OCD, Tourette’s and tic disorders do not have autism.  However, some very young children with Tourette’s and apparent autism, actually may have something termed “Dysmaturational Syndrome”.

Dysmaturational syndrome was identified and documented by Michele Zappella, an Italian doctor interested in autism and Tourette’s syndrome.

He identified a sizable subgroup of autism in very young children that was comorbid with the Tourette’s Syndrome tic disorder.  The unusual thing is that by the age of six, these children had “grown out” of their autism entirely.

Zappella’s study in 2010 suggests that his Dysmaturational syndrome applies to about 6% of early childhood autism.  In effect, he is saying that 6% of the children diagnosed before 5 years old with autism, fit this Dysmaturational syndrome and “recover” to have normal IQ, no seizures, and no signs of autism.  The tics though do not go away.


Early-onset Tourette syndrome with reversible autistic behaviour: A dysmaturational syndrome. European Child and Adolescent Psychiatry



ABSTRACT
Early-onset Tourette syndrome comorbid with reversible autistic behaviour is described in twelve young males. After a normal gestation, delivery and first-year development, regression set in between the age of one and two with loss of various abilities and the emergence of autistic behaviour. At this time, or slightly later, they showed multiple motor and vocal tics, simple and complex: the latter could also be traced to most of their parents. Following an intervention based on intense cuddling, motor activation and paedagogic guidance, these children's abilities rapidly improved, reaching at follow-up a normal or borderline intellectual functioning and with the disappearance of their initial autistic behaviour. At follow-up tics were present in all, usually with the features of a full-blown Tourette syndrome, often comorbid with ADHD, and in some cases with OCD.


Autistic regression with and without EEG abnormalities followed by favourable outcome.


Abstract


OBJECTIVES:

To explore the relationship between autistic regression (AR) with and without EEG abnormalities and favourable outcome.

METHODS:

Follow up data on children with favourable outcome in a series of 534 cases aged below 5 years and diagnosed as ASD.

RESULTS:

Cases with regression were 167 (31.8%), usually with persistent ASD, intellectual disabilities and EEG abnormalities. Thirty nine children (7.3%) went off autism and recovered entirely their intellectual and social abilities. Few of them included examples of pharmacologically treated Landau and Kleffner syndrome and other similar complex cases with abnormal EEG. The majority was represented by 36 (6.7%) children, mostly males, with a dysmaturational syndrome: their development was initially normal up to 18 months when an autistic regression occurred accompanied by the appearance of motor and vocal tics. Relational therapies were followed by rapid improvement. By 6 years all children had lost features of ASD and their I.Q. was in most cases between 90 and 110. Convulsions were absent and EEG was normal in all cases except one. In a few of them recovery was spontaneous. Seventeen children were followed after 5 years 6 months: 12 (70%) had ADHD, 10 (56%) persistent tics. Tics were often present in parents and relatives, ASD absent, suggesting a genetic background different from cases with persistent ASD. With one exception all "off autism" children had a previous autistic regression.


Back to Group A Strep

For those of you not familiar with PANDAS/PANS.  The term ‘PANDAS’ is short for ‘Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcus’.  A child can be diagnosed with PANDAS when Obsessive Compulsive Disorder (OCD) or tic symptoms suddenly appear for the first time, or the symptoms suddenly get much worse, and the symptoms occur during or after a strep infection in the child.








Faced with a pediatric patient demonstrating the abrupt onset or exacerbation of psychiatric and physical symptoms, clinicians should consider PANS in their differential diagnosis.



Even though Dr Swedo, the leading researcher in the field, says that PANDAS/PANS is not autism, many parents of children with autism think they do have PANDAS/PANS.  This is likely because they have noticed that a strep infection makes their kind of autism worse.

All I can say is that there are very good reasons why strep infections can make autism worse and this has nothing to do with the autoantibodies that are the disputed cause of PANDAS/PANS.



Response to Group A Strep

Your immune system has two levels of defense:-

·        The innate immune system

·        The adaptive immune system


When you have a strep infection both systems respond.  Both of these responses could cause problems for people with autism.  The response from the innate immune system should continue only as long as the bacteria is present, while the response from the adaptive immune system may in some cases continue long after the bacteria is gone.


Innate Immune Response

It is well known that GAS is followed by a robust inflammatory response.

As you can see from the figure below, the inflammatory response results in a wave of pro-inflammatory cytokines including the “arch enemy” of autism, IL-6.

This surge in IL-6 will likely cause a sub-set of those with autism and an over activated immune system (activated microglia and so the “immunostat” is set to high) to go crazy.  This is the same IL-6 surge triggered by mast cell degranulation and the Il-6 surge used to signal milk teeth roots to dissolve.




Infections caused by group A Streptococcus (GAS) are characterized by robust inflammatory responses and can rapidly lead to life-threatening disease manifestations. However, host mechanisms that respond to GAS, which may influence disease pathology, are understudied.










Figure 1. Cellular receptors and signalling pathways involved in GAS recognition and inflammatory mediator release.

Inflammatory mediators are released from multiple leukocyte types during GAS infection; including PMNs, monocytes, macrophages, and dendritic cells . GAS and GAS-derived LTA, SLO, and soluble M1 protein (sM1), activate cellular responses to infection . Receptors involved in recognition of GAS include TLRs, TREM-1, complement receptors (CR), immunoglobulin receptors (FcR), Mac-1, and NLRP3 . Ligand binding to these receptors leads to downstream signalling via MyD88, HIF-1α, STING, IFR3, IRF5, and TBK1 . Recognition of GAS triggers release of interleukins, TNF-α, IFN-β, HBP, resistin, and LL-37 .




The Adaptive Immune Response:

Streptococcal Infection Causing Rheumatic Fever


Acute rheumatic fever (ARF) may occur following an infection of the throat by the bacteria Streptococcus pyogenes. If it is untreated ARF occurs in up to three percent of people.

Acute rheumatic fever (ARF) is not caused by the strep bacteria, but to aberrant immunological reactions to Group A streptococcal antigens.  The underlying mechanism is believed to involve the production of antibodies against a person's own tissues.

ARF, is an inflammatory disease that can involve the heart, joints, skin, and brain. The disease typically develops two to four weeks after a throat infection. Signs and symptoms include fever, multiple painful joints, and involuntary muscle movements.
It would appear that in some children, following a strep infection, they develop tics.  These involuntary muscle movements are a symptom of acute rheumatic fever (ARF).  So rather than calling it by a new name PANDAS, perhaps better just to use the old name?



Strep infections PANDAS, OCD and Tourette’s

There is quite a lot of research on this subject, but much is contradictory. The idea put forward by researchers like Swedo is that elevated streptococcal antibodies causes PANDAS, but other researchers appear to have disproved this.

So you can make what you will of the research.

What is undisputed is that a strep throat can lead to acute rheumatic fever, which can affect the brain and cause involuntary muscle movements (tics) amongst other things.



Streptococcal infections can induce obsessive-compulsive and tic disorders. In children, this syndrome, frequently associated with disturbances in attention, learning and mood, has been designated pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection (PANDAS). Autoantibodies recognizing central nervous system (CNS) epitopes are found in sera of most PANDAS subjects, but may not be unique to this neuropsychiatric subset. In support of a humoral immune mechanism, clinical improvement often follows plasmapheresis or intravenous immunoglobulin. We recently described a PANDAS mouse model wherein repetitive behaviors correlate with peripheral anti-CNS antibodies and immune deposits in brain following streptococcal immunization. These antibodies are directed against group A β-hemolytic streptococcus matrix (M) protein and cross-react with molecular targets complement C4 protein and α-2-macroglobulin in brain. Here we show additional deficits in motor coordination, learning/memory and social interaction in PANDAS mice, replicating more complex aspects of human disease. Furthermore, we demonstrate for the first time that humoral immunity is necessary and sufficient to induce the syndrome through experiments wherein naive mice are transfused with immunoglobulin G (IgG) from PANDAS mice. Depletion of IgG from donor sera abrogates behavior changes. These functional disturbances link to the autoimmunity-related IgG1 subclass but are not attributable to differences in cytokine profiles. The mode of disrupting blood–brain barrier integrity differentially affects the ultimate CNS distribution of these antibodies and is shown to be an additional important determinant of neuropsychiatric outcomes. This work provides insights into PANDAS pathogenesis and may lead to new strategies for identification and treatment of children at risk for autoimmune brain disorders.




ABSTRACT

Background: An autoimmune-mediated mechanism has been proposed for both pediatric autoimmune neuropsychiatric disorder associated with streptococcal infection (PANDAS) and Tourette syndrome (TS). Confirmatory evidence has, in part, been based on controversial findings of autoantibodies in the sera of children with these disorders.

Objective: To compare antineuronal antibody profiles in subjects with TS and PANDAS to age-matched controls.

Methods: Sera were obtained from 48 children with PANDAS, 46 with TS, and 43 age-matched controls. Serum autoantibodies were measured by use of ELISA and Western immunoblotting against a variety of epitopes, including human postmortem caudate, putamen, and prefrontal cortex (Brodmann area 10). Immunoreactivity was also measured against commercially available α- and γ-enolase, aldolase C, and pyruvate kinase M1. Several assays were repeated after preabsorption of sera with M6 strain streptococci.

Results: Median ELISA optical density readings were similar among the groups. Western blot analyses showed complex staining patterns with no differences in any tissue region based on the number of bands, reactivity peaks at molecular weights 98, 60, 45, and 40 kDa, or total area under ScanPack (Biometra, Gottingen, Germany)–derived peaks. Immunoreactivity against four putative pathologic antigens did not differentiate the clinical groups. Repeat immunoblotting after serum preabsorption with streptococci showed no loss of reactivity. ELISA values exceeding a specified cutoff did not predict changes in binding to either brain epitopes or commercial antigens.

Conclusions: Results do not support the hypothesis that PANDAS and Tourette syndrome are secondary to antineuronal antibodies. Longitudinal studies are required to determine whether autoantibodies correlate with fluctuations in clinical activity







CONCLUSIONS. The failure of immune markers to correlate with clinical exacerbations in children with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections raises serious concerns about the viability of autoimmunity as a pathophysiological mechanism in this disorder.




Conclusions: The present study does not support a strong relationship between streptococcal infections and neuropsychiatric syndromes such as obsessive-compulsive disorder and Tourette syndrome. However, it is possible that a weak association (or a stronger association in a small susceptible subpopulation) was not detected due to nondifferential misclassification of exposure and limited statistical power. The data are consistent with previous reports of greater rates of diagnosis of Tourette syndrome or tics in white populations.






Our results demonstrate the potential pathogenic role of autoantibodies produced following exposure to GAS in the induction of behavioral and motor alterations, and support a causal role for autoantibodies in GAS-related neuropsychiatric disorders.





Background: Studies have noted immunological disruptions in patients with tic disorders, including increased serum cytokine levels. This study aimed to determine whether or not cytokine levels could be correlated with tic symptom severity in patients with a diagnosed tic disorder.
Methods: Twenty-one patients, ages 4–17 years (average 10.63±2.34 years, 13 males), with a clinical diagnosis of Tourette's syndrome (TS) or chronic tic disorder (CTD), were selected based on having clinic visits that coincided with a tic symptom exacerbation and a remission. Ratings of tic severity were assessed using the Yale Global Tic Severity Scale (YGTSS) and serum cytokine levels (interleukin [IL]-2, IL-4, IL-5, IL-10, IL-12p70, IL-13, interferon [IFN]-γ, tumor necrosis factor [TNF]-α, and granulocyte macrophage-colony stimulating factor [GM-CSF]) were measured using Luminex xMAP technology.
Results: During tic symptom exacerbation, patients had higher median serum TNF-α levels (z=−1.962, p=0.05), particularly those on antipsychotics (U=9.00, p=0.033). Increased IL-13 was also associated with antipsychotic use during exacerbation (U=4.00, p=0.043) despite being negatively correlated to tic severity scores (ρ=−0.599, p=018), whereas increased IL-5 was associated with antibiotic use (U=6.5, p=0.035). During tic symptom remission, increased serum IL-4 levels were associated with antipsychotic (U=6.00, p=0.047) and antibiotic (U=1.00, p=0.016) use, whereas increased IL-12p70 (U=4.00, p=0.037) was associated with antibiotic use.
Conclusions: These findings suggest a role for cytokine dysregulation in the pathogenesis of tic disorders. It also points toward the mechanistic involvement and potential diagnostic utility of cytokine monitoring, particularly TNF-α levels. Larger, systematic studies are necessary to further delineate the role of cytokines and medication influences on immunological profiling in tic disorders.






Objective: Pediatric acute-onset neuropsychiatric syndrome (PANS) is a subtype of obsessive compulsive disorder (OCD) marked by an abrupt onset or exacerbation of neuropsychiatric symptoms. We aim to characterize the phenotypic presentation of youth with PANS.
Methods: Forty-three youth (ages 4–14 years) meeting criteria for PANS were assessed using self-report and clinician-administered measures, medical record reviews, comprehensive clinical evaluation, and laboratory measures.
Results: Youth with PANS presented with an early age of OCD onset (mean=7.84 years) and exhibited moderate to severe obsessive compulsive symptoms upon evaluation. All had comorbid anxiety and emotional lability, and scored well below normative means on all quality of life subscales. Youth with elevated streptococcal antibody titers trended toward having higher OCD severity, and presented more frequently with dilated pupils relative to youth without elevated titers. A cluster analysis of core PANS symptoms revealed three distinct symptom clusters that included core characteristic PANS symptoms, streptococcal-related symptoms, and cytokine-driven/physiological symptoms. Youth with PANS who had comorbid tics were more likely to exhibit a decline in school performance, visuomotor impairment, food restriction symptoms, and handwriting deterioration, and they reported lower quality of life relative to youth without tics.
Conclusions: The sudden, acute onset of neuropsychiatric symptoms, high frequency of comorbidities (i.e., anxiety, behavioral regression, depression, and suicidality), and poor quality of life capture the PANS subgroup as suddenly and severely impaired youth. Identifying clinical characteristics of youth with PANS will allow clinicians to diagnose and treat this subtype of OCD with a more strategized and effective approach.


Conclusion

If exposure to strep causes your child to “go crazy” I think this is a case of IL-6 triggering an autism flare-up.  Once the strep is treated, IL-6 levels will fall and the crazy behavior and raging will subside.  This should be a short term problem.  This is unrelated to PANDAS/PANS.  IL-6 autism flare-ups caused by an inflammatory response, as opposed to an allergic response, do respond remarkably well to a small dose of ibuprofen. Ibuprofen can even be used to prevent this type of flare-up.  If the IL-6 surge was triggered by mast cell degranulation, ibuprofen will not help.

If exposure to strep causes facial grimacing and other tics then the short term increase in IL-6 and TNF-α is exacerbating a, likely already existing, tic disorder.  If the tics do not go away after the strep has been treated, then it may be that strep autoantibodies are indeed the problem and you may have a variant of rheumatic fever, in which case you could look at the suggested PANDAS/PANS therapies.