UA-45667900-1
Showing posts with label Austism flare up. Show all posts
Showing posts with label Austism flare up. Show all posts

Wednesday 3 June 2015

Primary and Secondary Dysfunctions in Autism - plus Candesartan



Sometimes the secondary event can completely overshadow the primary event.  
The above relates to dust explosions (in large silos containing grain, sugar etc.) rather than autism.


As we continue to investigate the science behind autism and associated possible therapies, it is becoming necessary to introduce some further segmentation.

I have referred to autism “flare-ups” many times, but even that term means very different things to different people.

We now have many examples of autism treatments (NAC, Bumetanide etc), once effective, suddenly stopping working in certain people.  This needs explaining.

We know from the research that in most cases, autism is caused by multiple “hits”, only when taken together do they lead to autism.

We also see the “double tap” variety of autism, when relatively mild autism later develops into something more serious, following some event, or trigger.  

Thanks to the internet, we know have numerous n=1 examples of certain drugs showing a positive effect in some people.  You do have to discount all those people trying to sell you something, or support the cause of others trying to sell you something.  We also have full access to all those people who have patented their clever ideas, although 99% never develop them.

Within all this information there are some very useful insights, which can help further our understanding of autism


Candesartan

A case in point is Candesartan, which one reader of this blog brought to my attention, in the comment below.  This drug is used to treat high blood pressure and is often combined with a diuretic.


A very recent study relating to neurodegenerative disease and Parkinson's especially:

http://www.sciencedaily.com/releases/2015/05/150512150022.htm

discusses the use of a new drug as well as another blood pressure drug sometimes used in conjunction with Bumetanide called Candesartan. Their goal in this study was to explore how to attenuate chronic microglial activation (a hallmark of autism) by targeting toll-like receptors TLR1 and TLR2 via these two drugs.

Candesartan also modulates NKCC2 activity:

http://www.ncbi.nlm.nih.gov/pubmed/18305093

which is interesting considering the original cited research above deals with attenuating microglial activation, rather than modulating the chloride levels within GABA inhibitory neurons as Bumetanide does.


Note that Bumetanide affects both NKCC1 and NKCC2 transporters.  NKCC1 is present in the brain at birth, but should not be present in the adult brain.  However, it appears to remain in a large sub-group of those with autism, causing GABA to remain excitatory.  NKCC2 is found specifically in the kidney, where it serves to extract sodium, potassium, and chloride from the urine so that they can be reabsorbed into the blood

This drug is, along with Minocycline, is one of the few that is known to have an effect on microglial activation.

In a clinical trial, Minocycline was shown to have no effect on autism.

I do feel this kind of assessment is too simplistic; so I was interested to see the actual effect of Candesartan in autism, albeit with n=1.

Conveniently somebody has filed a patent for the use of Candesartan in autism.  Within the document is the n=1 case report of its effect.



[00047] A 16 year old boy with autism was evaluated for behavioral management. He was frequently aggressive, primarily directed to himself but to others as well. These episodes were usually unprovoked but would also occur when his parents attempted to re direct him. The child was essentially non verbal except for echolalia. His comprehension to verbal re direction was limited, making non pharmacological interventions to his aggression limited.

[00048] His neurological exam was otherwise normal.

[00049] An MRI, EEG were normal. Routine studies, including examination for fragile x and other metabolic disorders were negative.

[00050] Prior medication trials included anti convulsants which were without benefit and atypical neuroleptics, which resulted in weight gain and unsatisfactory effects on behavior.

[00051] After obtaining consent from his parents, Candesartan was started. An initial dose of 8 mg resulted in significant attenuation of aggressive behavior. Blood pressure remained stable. After 2 weeks, the dose was raised to 16 mg. Further improvement in aggression was noted with no adverse lowering of blood pressure.

[00052] The patient has remained on Candesartan with beneficial anti aggression effects being maintained over one year.

[00053] A preferred dose found by the inventor to treat autism is approximately O.lmg/kg. In children, a liquid form may be used.



So we can conclude from this that in a non-verbal 16 year old boy with autism, with significant aggressive tendencies, this drug successfully reduced aggression.  Since he was on the drug for a year, there were no other major changes, such as language or cognitive function, otherwise they would surely be mentioned to support the patent.

I can of course look further into why Candesartan might have been effective.

Our blog reader suggested this research:-




"The real job of microglia is to keep the brain healthy by getting rid of pathogens as well as cellular debris," says Maguire-Zeiss, "However, in a diseased state microglia can become chronically activated, leading to a continuous onslaught of inflammation which is damaging to the brain."
In this study, the Maguire-Zeiss lab found that only a certain size structures of misfolded α-synuclein can activate microglial cells -- normal protein and even smaller forms of misfolded α-synuclein cannot. Then the researchers sought to discover precisely how microglia responded to misfolded α-synuclein; that is, which of its many "pattern recognition receptors" reacted to the toxic protein.
Microglia use many different pattern recognition proteins, called toll-like receptors (TLR), to recognize potential threats. The investigators found that misfolded α-synuclein caused TLR1 and TLR2 to come together into one complex (receptor), creating TLR1/2. They traced the entire molecular pathway from the protein's engagement of TLR1/2 at the cell surface to the production of inflammatory molecules.
Then Maguire-Zeiss and her team tested a drug, developed by researchers at the University of Colorado, which specifically targets TLR1/2. They also tested the hypertension drug candesartan, which can target TLR2. Both agents significantly reduced inflammation.


I found some other possible explanations:-



Brain inflammation has a critical role in the pathophysiology of brain diseases of high prevalence and economic impact, such as major depression, schizophrenia, post-traumatic stress disorder, Parkinson's and Alzheimer's disease, and traumatic brain injury. Our results demonstrate that systemic administration of the centrally acting angiotensin II AT1 receptor blocker (ARB) candesartan to normotensive rats decreases the acute brain inflammatory response to administration of the bacterial endotoxin lipopolysaccharide (LPS), a model of brain inflammation. The broad anti-inflammatory effects of candesartan were seen across the entire inflammatory cascade, including decreased production and release to the circulation of centrally acting proinflammatory cytokines, repression of nuclear transcription factors activation in the brain, reduction of gene expression of brain proinflammatory cytokines, cytokine and prostanoid receptors, adhesion molecules, proinflammatory inducible enzymes, and reduced microglia activation. These effects are widespread, occurring not only in well-known brain target areas for circulating proinflammatory factors and LPS, that is, hypothalamic paraventricular nucleus and the subfornical organ, but also in the prefrontal cortex, hippocampus, and amygdala. Candesartan reduced the associated anorexic effects, and ameliorated associated body weight loss and anxiety. Direct anti-inflammatory effects of candesartan were also documented in cultured rat microglia, cerebellar granule cells, and cerebral microvascular endothelial cells. ARBs are widely used in the treatment of hypertension and stroke, and their anti-inflammatory effects contribute to reduce renal and cardiac failure. Our results indicate that these compounds may offer a novel and safe therapeutic approach for the treatment of brain disorders.

However the underlying mechanism may indeed be (yet again) activating PPAR γ.


Involvement of PPAR-γ in the neuroprotective and anti-inflammatory effects of angiotensin type 1 receptor inhibition: effects of the receptor antagonist telmisartan and receptor deletion in a mouse MPTP modelof Parkinson's disease


This paper suggests that the effect of Candesartan on microglia is :-


"Several recent studies have shown that angiotensin type 1 receptor (AT1) antagonists such as candesartan inhibit the microglial inflammatory response and dopaminergic cell loss in animal models of Parkinson's disease. However, the mechanisms involved in the neuroprotective and anti-inflammatory effects of AT1 blockers in the brain have not been clarified. A number of studies have reported that AT1 blockers activate peroxisome proliferator-activated receptor gamma (PPAR γ). PPAR-γ activation inhibits inflammation, and may be responsible for neuroprotective effects, independently of AT1 blocking actions."



Primary Autism Dysfunctions

I define Primary Autism Dysfunctions as those core dysfunctions that are always present.

So in the case of Monty, aged 11 with ASD, the primary dysfunctions include:-


·        GABAA dysfunction, due to over expression of NKCC1,  leading to excitatory imbalance
·        Oxidative stress


In some other people the primary dysfunctions are quite different:-

·        Mitochondrial disease

·        etc...


I think that most aggressive behavior resulting from these dysfunctions can be traced back to communication problems and frustration.  So if the person is non-verbal and cannot get what he/she wants, aggression may follow; or if the person has pain and cannot understand it or seek help he may lash out at his care giver.



Secondary Autism Dysfunctions

I define Secondary Autism Dysfunctions as additional dysfunctions that can appear and disappear over time, these are my "flare-ups".

These dysfunctions can be more disabling that the Primary Autism Dysfunctions and it appears these are the dysfunctions that may trigger un-prompted self-injury and other random aggression.

These secondary dysfunctions can be so strong that they completely outweigh the primary dysfunction, giving the effect that the treatment for the primary dysfunction has “stopped working”.

It appears that many  Secondary Autism Dysfunctions are linked to an “over activated immune system”.  It does appear that from the research that activated microglia is an expression of this immune state and we saw one researcher calling the microglia the brain's “immunostat”. 

So in the case of Monty, aged 11 with ASD, the secondary dysfunctions are:-


·        over activated immune system / activated microglia
·        mast cell degranulation as a trigger
·        Il-6 from dissolving milk teeth as a trigger
·        Emotional distress (aged 8, when his long-time assistant left) as trigger (Emotional distress is known to cause oxidative stress)


In other people the secondary dysfunctions may be similar or quite different, for example:-


·        over activated immune system / activated microglia
·        leaky gut with GI problems as a trigger
·        food intolerance as a trigger
·        bacterial infection, with remission while on antibiotics, as a trigger
·        etc …


So I think the trial of Minocycline may have failed because the subjects were only affected by Primary Autism Dysfunctions.

I think the 16 year old aggressive boy in the Candersartan patent most likely had big Secondary Autism Dysfunctions.  The drug reduced microglial activation and so damped the effect of whatever his particular triggers were.

So probably Minocycline should be trialed again, but only in people with autism and regular SIB and aggression.  Success would be measured as a reduction in violent events.

Drugs targeting Primary Autism Dysfunctions should show things like:-

·        Cognitive improvement
·        Increased speech
·        Improved social interactions
·        Reduction in stereotypy
·        Reduction in anxiety (in higher functioning cases)


So I could classify my own interventions as


Primary

·        Bumetanide
·        Low dose Clonazepam
·        NAC
·        Sulforaphane (broccoli)
·        Atorvastatin
·        Potassium


Secondary

·        Verapamil
·        Sytrinol/Tangeretin PPAR-γ agonist for microglia

·        Occasional use of Ibuprofen (anti IL-6 therapy)
·        Quercetin/Azelastine/ Fluticasone Propionate for mast cells







The over activated immune system/activated microglia needs a trigger


Just like a modern plastic explosive is completely harmless to touch and needs the combination of extreme heat and shock wave from a detonator, it appears that the activated microglia, commonly found in autism, is in itself harmless, like Play-Doh, without a trigger.

But with a trigger, you probably know what can happen next.










What about all those failed clinical trials? False Negatives?

So now you not only need to match the trial therapy with the correct sub-type of autism, but you also cannot reliably trial a drug for a Primary Dysfunction, if there is an "active" Secondary Dysfunction.

This is indeed the reason why I do not try new therapies during the summer pollen season.

Perhaps this partly explains why clinical trials in autism always seem to fail.










Tuesday 12 May 2015

Minimizing Summertime Autism Flare-ups in 2015




When I first connected histamine to autism, I did not realize that this might be a common problem.  The most frequently viewed post on this blog is one on histamine and autism; so at least 10,000 people out there have googled “autism and histamine”.

Two years later, the therapy is still evolving and it should be said that, what works best for one person may not help in another person.  The main point is that in some people with autism, they face a summertime regression due to the effect of allergy.  So bad behaviours and aggression increase and good behaviours and indeed cognitive function decrease.  This appears to be the result of histamine and a pro-inflammatory cytokine called IL-6.

For the 2015 pollen season, which started early where we live, this is what we are using:-


Azelastine nasal spray, this is an H1 antihistamine that is also inhibits mast cells from “degranulating” and emptying their load of pro-inflammatory substances.  Once a day.

Quercetin is a cheap flavonoid that has numerous actions including on histamine H1 receptors, mast cells, and inflammation. 125mg two or three times a day.

Verapamil is an L-type calcium channel blocker and also a mast cell stabilizer. 40mg three times a day

Fluticasone propionate 50 µg (micrograms) – see below.  It is a steroid that has recently been shown to have some unexpected effects on mast cells.  


I have found that oral antihistamines were effective for only a couple of hours, but their effect varies widely from person to person.

In theory, Rupatadine should be the most effective anti-histamine, since it is also a potent mast cell stabilizer.  The old first generation antihistamines (that make you drowsy) could in theory be better than the new ones like Claritin, Zyrtec, since they can also cross the blood brain barrier (BBB).

Ketotifen and cromolyn sodium should also be useful, but if the allergy is pollen related, you really need the nasal spray (nasalcrom etc) to get the most effect.  In some countries they sell eye drops and not the nasal spray.  Usually the eye drops are more diluted than the nasal spray.  For example, the Azelastine eye drops contain 50% less Azelastine than the nasal spray, but are otherwise the same.  Where we live they have run out of the nasal spray but not the eye drops, so you could refill the spray with eye drops and double the number of sprays to get the same dose.

Drugs like Claritin and Zyrtec are H1 antihistamines and also partial mast cell stabilizers; they have a positive behavioral effect in some people with ASD, who are apparently allergy free.



New for 2015

I expect that two recent anti-inflammatory therapies, the Tangeretin flavonoid and the Miyairi 588 bacteria/probiotic may have a beneficial, indirect, effect on our usual summertime regression.

A more convention approach is to add fluticasone propionate to reduce the inflammation caused by allergy.  This drug is a steroid and widely used either as an inhaler to control asthma and COPD, or as a nasal spray to treat allergies.

As Flixotide inhaler, Monty, aged 11 with ASD and asthma, has already been taking fluticasone propionate for a few years.  We now use a tiny dose (50 µg), since his autism therapies have greatly reduced any asthma tendencies.

Fluticasone propionate nasal spray (Flixonase, Flonase etc) is widely sold as a treatment for hay fever and rhinitis and was recently combined with Azelastine (see above) as a treatment for moderate to severe allergies in a product call Dymista.

The combination of H1 antihistamine, mast cell stabilizer and anti-inflammatory all in one spray does seem a good idea.  The steroid dose using Dymista is actually lower than the usual dose of steroid when using Fluticasone propionate nasal spray alone.  You want to minimize the amount of steroid absorbed in the blood. When used as a spray/inhaler the amount is tiny, but still should be considered.

Dymista (Azelastine + Fluticasone propionate) does indeed work better than Azelastine alone.  There is no sign of allergy at all (no red eyes, sneezing, itchy nose), with Azelastine you still have an itchy nose.

In our case, the allergy symptoms, even minors ones, do correlate with the change in behaviour and cognitive function; so the target is no allergy symptoms at all.


If anyone has other therapies for summertime flare ups, feel free to share them.






Wednesday 6 May 2015

Tangeretin vs Ibuprofen, as PPARγ agonists for Autism. What about PPARγ for Epilepsy?




Summary of the therapeutic actions of PPARγ in diabetic nephropathy


I did write an earlier post about NSAIDs (Nonsteroidal anti-inflammatory drugs) like Ibuprofen, which I expected to have no effect on autism.

  


However, to my surprise, I found that certain types of autism “flare-up” do respond very well to Ibuprofen.  Based on the comments I received, it seems that many other people have the same experience.

NSAIDs work by inhibiting something called COX-2, but they also inhibit COX-1.  The side effects of NSAIDs come from their unwanted effect on COX-1.

NSAIDs are both pain relievers and, in high doses, anti-inflammatory.  Long term use of NSAIDs is not recommended, due to their (COX-1 related) side effects.


Observational Study

All I can say is that in Monty, aged 11 with ASD, and with his last four milk teeth wobbly but refusing to come out, the increase in the cytokine IL-6 that the body uses to signal the roots of the milk teeth to dissolve seems to account for some of his flare-ups.  I do not think it is anything to do with pain.

This is fully treatable with occasional use of Ibuprofen and then “extreme behaviours” are entirely avoided.


Sytrinol (Tangeretin) vs Ibuprofen

Since Ibuprofen, when given long term, has known problems, I looked for something else.

On my list of things to investigate has been “selective PPAR gamma agonists”, which is quite a mouthful.  The full name is even longer.  The nuclear transcription factor peroxisome proliferator activated receptor gamma (PPARy) regulates genes in anti-inflammatory, anti-oxidant and mitochondrial pathways.  All three of these pathways are affected in autism.

We already know that non-selective PPARy agonists, like pioglitazone, developed to treat type 2 diabetes, can be used to treat autism.  The problem is that being “non-selective” they can have nasty side effects, leading to Pioglitazone being withdrawn in some markets.
  

  
While looking for a “better” PPARγ agonist, I came across the flavonoid Tangeretin, which is commercially available in a formulation called Sytrinol.

An effective PPARγ agonist would have many measurable effects.  The literature is full of natural substances that may, to some degree, be PPARγ agonists, but you might have to consume them by the bucket load to have any effect.

The attraction of Sytrinol is that it does have a measurable effect in realistic doses.  Sytrinol is sold as a product to lower cholesterol.  Tangeretin is a PPARγ agonist and you would expect a PPARγ agonist to improve insulin sensitivity and also reduce cholesterol. There are clinical trials showing this effect of Sytrinol.


Sytrinol (Tangeretin) Experiment

The most measurable effect of using Sytrinol for six weeks is that we no longer need any Ibuprofen.  It is measurable, since I am no longer needing to buy Ibuprofen any more.

About three days a week Monty’s assistant would need to give him Ibuprofen at school.  This all stopped, even though occasional complaints about wobbly teeth continue.

Nobody markets  Sytrinol (Tangeretin) as a painkiller.

Note:- Sytrinol capsules contain a blend of 270mg PMF (polymethoxylated flavones, consisting largely of tangeretin and nobiletin) + 30mg tocotrienols. Nobiletin is closely related to tangeretin, while tocotrienols are members of the vitamin E family.  All three should be good for you.


Tangeretin and Ibuprofen are both PPARγ agonists

The explanation for all this may indeed be that Tangeretin and Ibuprofen are both PPARγ agonists.  Inhibiting COX-2 may have been irrelevant.


  
It may be that by regulating the anti-inflammatory genes, via  PPARγ, the Sytrinol has countered the “flare-up” caused by the spike in IL-6.

Anyway, in the earlier post we did see that research shows that dissolving milk teeth is signalled via increased IL-6 and we do know that increased IL-6, caused by allergies, can trigger worsening autism. 

So it does make sense, at least to me.

Regular uses of Sytrinol/Tangeretin looks a much safer bet than any NSAID.

If anyone tries it, particularly those who regularly use NSAIDs, let us all know.



PPARγ and Epilepsy

If you Google PPARγ and autism you will soon end up back at this blog.

For any sceptics, better to Google PPARγ and Epilepsy.  Epilepsy looks to be the natural progression of un-treated classic autism.  If this progression can be prevented, that should be big news.

Prevention is always better than a cure.  All kinds of conditions appear to be preventable, or at least you can minimize their incidence.  

Here are just the ones I have stumbled upon while researching autism:- Asthma  (Ketotifen), type 2 diabetes (Verapamil), prostate cancer (Lycopene) and many types of cancer (Sulforaphane).

There are of course types of epilepsy unconnected to autism, but epilepsy, seizures and electrical activity are highly comorbid with classic autism




Abstract

Approximately 30% of people with epilepsy do not achieve adequate seizure control with current anti-seizure drugs (ASDs). This medically refractory population has severe seizure phenotypes and is at greatest risk of sudden unexpected death in epilepsy (SUDEP). Therefore, there is an urgent need for detailed studies identifying new therapeutic targets with potential disease-modifying outcomes. Studies indicate that the refractory epileptic brain is chronically inflamed with persistent mitochondrial dysfunction. Recent evidence supports the hypothesis that both factors can increase the excitability of epileptic networks and exacerbate seizure frequency and severity in a pathological cycle. Thus, effective disease-modifying interventions will most likely interrupt this loop. The nuclear transcription factor peroxisome proliferator activated receptor gamma (PPARy) regulates genes in anti-inflammatory, anti-oxidant and mitochondrial pathways. Preliminary experiments in chronically epileptic mice indicate impressive anti-seizure efficacy. We hypothesize that (i) activation of brain PPARy in epileptic animals will have disease modifying effects that provide long-term benefits, and (ii) determining PPARy mechanisms will reveal additional therapeutic targets. Using a mouse model of developmental epilepsy, we propose to (1) elucidate the cellular, synaptic and network mechanisms by which PPARy activation restores normal excitability;(2) demonstrate the significant contribution of mitochondrial health in pathologic synaptic activity in epileptic brain;(3) demonstrate inflammatory regulation of PPARy in epileptic brain;and (4) determine whether PPARy activation extends the lifespan of severely epileptic animals. The proposed studies, spanning in vivo and in vitro systems using a combination of techniques in molecular biology, electrophysiology, microscopy, bioenergetics and pharmacology, will provide insight into the interplay of seizures, mitochondria, inflammation and homeostatic mechanisms. The results will have tremendous, immediate translational potential because PPARy agonists are currently used for clinical treatment of Type II Diabetes. PPARy is under investigation as treatment for a wide variety of other neurological diseases with cell death and inflammation as common denominators;therefore, the results of this proposal will have a broad impact.

Public Health Relevance

Approximately 30% of people with epilepsy do not achieve adequate seizure control with current anti-seizure drugs (ASDs). This medically refractory population has severe seizure phenotypes and is at greatest risk of sudden unexpected death in epilepsy (SUDEP). Therefore, there is an urgent need for detailed studies identifying new therapeutic targets with potential disease- modifying outcomes.




Activation of cerebral peroxisome proliferator-activated receptors gamma exerts neuroprotection by inhibiting oxidative stress following pilocarpine-induced status epilepticus.

Abstract

Status epilepticus (SE) can cause severe neuronal loss and oxidative damage. As peroxisome proliferator-activated receptor gamma (PPARgamma) agonists possess antioxidative activity, we hypothesize that rosiglitazone, a PPARgamma agonist, might protect the central nervous system (CNS) from oxidative damage in epileptic rats. Using a lithium-pilocarpine-induced SE model, we found that rosiglitazone significantly reduced hippocampal neuronal loss 1 week after SE, potently suppressed the production of reactive oxygen species (ROS) and lipid peroxidation. We also found that treatment with rosiglitazone enhanced antioxidative activity of superoxide dismutase (SOD) and glutathione hormone (GSH), together with decreased expression of heme oxygenase-1 (HO-1) in the hippocampus. The above effects of rosiglitazone can be blocked by co-treatment with PPARgamma antagonist T0070907. The current data suggest that rosiglitazone exerts a neuroprotective effect on oxidative stress-mediated neuronal damage followed by SE. Our data also support the idea that PPARgamma agonist might be a potential neuroprotective agent for epilepsy.




CONCLUSION:

The present study demonstrates the anticonvulsant effect of acute pioglitazone on PTZ-induced seizures in mice. This effect was reversed by PPAR-γ antagonist, and both a specific- and a non-specific nitric oxide synthase inhibitors, and augmented by nitric oxide precursor, L-arginine. These results support that the anticonvulsant effect of pioglitazone is mediated through PPAR-γ receptor-mediated pathway and also, at least partly, through the nitric oxide pathway.



Note that elsewhere in this blog I have already highlighted that PPAR alpha agonists also seem to have an effect against epilepsy.  For example in this research:-


          

I was originally interested in PPAR-alpha, because of its role in regulating mast cells.  It seems that PPARγ also affects mast cells.


  


PPARγ modulators – drugs vs neutraceuticals vs functional food

It does seem that many people with inflammatory diseases, epilepsy, autism and even people who are obese, might greatly benefit from selective PPARγ agonists.

The choice would be between drugs, “nutraceuticals” and functional (good) food.

The drugs have not yet arrived that are safe and selective.  The current Thiazolidinedione (TZD) class of drugs TZDs tend to increase fat mass as well as improving insulin sensitivity and glucose tolerance in both lab animals and humans.




Since its identification in the early 1990s, peroxisome-proliferator-activated receptor γ (PPARγ), a nuclear hormone receptor, has attracted tremendous scientific and clinical interest. The role of PPARγ in macronutrient metabolism has received particular attention, for three main reasons: first, it is the target of the thiazolidinediones (TZDs), a novel class of insulin sensitisers widely used to treat type 2 diabetes; second, it plays a central role in adipogenesis; and third, it appears to be primarily involved in regulating lipid metabolism with predominantly secondary effects on carbohydrate metabolism, a notion in keeping with the currently in vogue ‘lipocentric’ view of diabetes. This review summarises in vitro studies suggesting that PPARγ is a master regulator of adipogenesis, and then considers in vivo findings from use of PPARγ agonists, knockout studies in mice and analysis of human PPARγ mutations/polymorphisms.



As usual there are numerous “natural substances” that may also modulate PPAR-γ




A direct correlation between adequate nutrition and health is a universally accepted truth. The Western lifestyle, with a high intake of simple sugars, saturated fat, and physical inactivity, promotes pathologic conditions. The main adverse consequences range from cardiovascular disease, type 2 diabetes, and metabolic syndrome to several cancers. Dietary components influence tissue homeostasis in multiple ways and many different functional foods have been associated with various health benefits when consumed. Natural products are an important and promising source for drug discovery. Many anti-inflammatory natural products activate peroxisome proliferator-activated receptors (PPAR); therefore, compounds that activate or modulate PPAR-gamma (PPAR-γ) may help to fight all of these pathological conditions. Consequently, the discovery and optimization of novel PPAR-γ agonists and modulators that would display reduced side effects is of great interest. In this paper, we present some of the main naturally derived products studied that exert an influence on metabolism through the activation or modulation of PPAR-γ, and we also present PPAR-γ-related diseases that can be complementarily treated with nutraceutics from functional foods.



Conclusion

If you are one of those people successfully using NSAIDs, like Ibuprofen, to reduce autistic behaviors, you might well be in the group that would benefit from Sytrinol/Tangeretin.

If NSAIDs never help resolve your autism flare-ups, Sytrinol/Tangeretin may not help either.

Tangeretin does appear to have other effects, beyond not needing to use Ibuprofen.  It was found to be a potent antagonist at P2Y2 receptors.

Suramin is another potent P2Y2 antagonist and Suramin is showing a lot of promise in Robert Naviaux’s autism studies at the University of California at San Diego.  Suramin is not viewed as safe for regular use in humans.