UA-45667900-1
Showing posts with label Asperger's. Show all posts
Showing posts with label Asperger's. Show all posts

Wednesday, 26 September 2018

Back to School and Try to be Cool


The Milaneses and their shops
                                             
Another school year has begun, which is always a good time for Monty, with ASD now aged 15. He loves his small international school; he has been there since was 3 years old. School is fun because he gets lots of attention and stimulation. Other children are surprisingly nice to him and the teachers get to meet someone with autism.

In kindergarten and the early years of primary/junior school boys with autism often get taken care of by some of the nicer girls. It is like having a live human doll to mother. It is amazing how this pattern repeats among different children with autism. This gradually seems to fade away as girls discover that they need to be cool and kids with special needs tend not to be cool.

We had a visit over the summer from a Dutch girl who was one of these nice little girls when she was younger. Now she is also 15 and has not seen Monty for a few years. The difference between them now is much starker than 10 years ago, but there still is a bond.
Last year at school for friendship development day they had to climb a small mountain, this year they went bowling. The girls in the year above wanted to teach Monty how to bowl and they did. The year above is unusual in being mainly girls.
I know that most children with autism/Asperger's cope with junior school but many, particularly Aspies, really hate high school, because they do not fit in and so they get bullied. Monty has never experienced any such problems, but he is not an Aspie, so he is not a target.  People who are a tiny bit different get bullied, people who are more different tend not to get picked on.
Big brother has graduated from high school and gone to University in Milan, Italy, far away. In his time at school the class were not so nice to the Aspie boy they had in their group and he was not nice to them. I think it was a lost opportunity; ultimately it is up to parents to make things happen.  Parents often blame schools, but most schools have no expert knowledge and have many other issues to deal with. Much more could be done to integrate those who are just a tiny bit different.
I think that to fit in, the special needs pupil needs to be “cool” and have an assistant who is seen by the class as “cool”. What counts as cool? How you dress, sport you do, musical skills etc. For the assistant it includes how old you behave; having an Assistant who behaves like a 50-year-old, is not going to help integrate a teenager.
Most kids figure out what is cool, but if you have any degree of autism you may not. I think some people would indeed benefit from “cool lessons”, you could call it “how to be a teenager”. There are workshops for Aspie teenagers, a little bit like this. 
In our household this new school year is much more about big brother. We have lots of video calls about Italian bureaucracy, how to cook, how expensive going out is, but how cheap Italian coffee is (no Starbucks).  Overall Milan is beautiful city, full of very fashion-conscious people who do seem to enjoy life.  The Italian students in class can be identified by their expensive sunglasses and their going for “aperitivo”.  The foreign boys are going for birra, bier, pivo, bira or cerveza, which is cheap in a supermarket but very expensive elsewhere. 
Bocconi is Italy’s top University for economics; it seems pretty well organized and is very inclusive. They have many students from poorer countries, who get substantial financial support from the University, which is the opposite of what happens in England (where foreign students face paying up to 3 times more for tuition). Germany is also good in this regard, where even Medical School is free to all, but you do need to learn German. Big brother is getting to practise his foreign languages, but tuition is in English.


   

Monday, 11 December 2017

Cognitive Loss/Impaired Sensory Gating from HCN Channels - Recovered by PDE4 Inhibition or an α2A Receptor Agonist

Today we have a complex dysfunction, but we have a plausible understanding of the detailed biological underpinnings and several therapeutic options. It is relevant to people with autism who have impaired sensory gating (they find noises like a clock ticking annoying), and perhaps those who struggle with complex thought. It is very likely to be disturbed in some people with ADHD and many with schizophrenia.

Trouble in the Pre-Frontal Cortex


For a recap on sensory gating, here is an earlier post:-

Sensory Gating in Autism, Particularly Asperger's


Today’s dysfunction relates to HCN channels located on those tiny dendritic spines in a part of the brain called the pre-frontal cortex. These are a type of voltage gated potassium channel found in your brain and heart, there are 4 types, it looks to me that HCN2 is the key one today.
The pre-frontal cortex (PFC) is seen as the part of the brain most affected by mental illness (schizophrenia, bipolar, ADHD etc.), although medicine’s current understanding looks rather medieval to me.
These HCN channels can open when they are exposed to cAMP (cyclic adenosine monophosphate). When open, the information can no longer flow into the cell, and thus the network (created by numerous interacting neurons) is effectively disconnected.
By keeping these channels closed, it is thought that you can improve working memory and reducing distractibility. Now you might think distractibility is an odd word, and it is not a word I expected to encounter, what it really means is impaired sensory gating. This is a core feature of Asperger’s, ADHD and schizophrenia.
One of the key risk genes for schizophrenia, DISC1, also affects HCN channels and this may account for some of the cognitive deficit found in schizophrenia. High level thinking is particularly affected.  It is thought that loss of DISC1 function in the PFC would likely prevent proper PDE4 function, leading to a dysregulated build-up of cAMP in dendritic spines resulting in excessive opening of HCN channels


I did wonder how nicotine fits in, since in earlier post we saw that α7 nAChR agonists, like nicotine, improve sensory gating and indeed that people with schizophrenia tend to be smokers. It turns out that nicotine is also an HCN channel blocker. For a change, everything seems to fit nicely together. There are different ways to block HCN channels, some of which are indirect. One common ADHD drug, Guanfacine, keeps these channels closed, but in a surprising way.
Alpha-2A adrenergic receptors near the HCN channels, on those dendritic spines, inhibit the production of cAMP and the HCN channels stay closed, allowing the information to pass through into the cell, connecting the network. These Alpha-2A adrenergic  receptors are stimulated by a natural brain chemical norepinephrine, or by drugs like Guanfacine.
Stress appears to flood PFC neurons with cAMP, which opens HCN channels, temporarily disconnects networks, and impairs higher cognitive abilities.
This would explain why stress makes people’s sensory gating problems get worse. So someone with Asperger’s would get more distracted/disturbed at exam time at school for example, or when he goes for a job interview. Reducing stress is another method to improve sensory gating and indeed cognition. In Monty, aged 14 with ASD, the only time he exhibits significantly impaired sensory gating, is when he has stopped all his Polypill therapies for several days. I think stress/anxiety is what has changed and this opens those HCN channels. Then even the sound of someone eating food next to him makes him angry.
Excessive opening of HCN channels might underlie many lapses in higher cognitive function.
While the researchers at Yale patented the idea of HCN blockers to improve cognition, we can see how other existing ideas to improve cognition may indeed have the same mechanism, most notably PDE4 inhibitors.
The University of Maastricht holds patents on the use of Roflumilast, a PDE4 inhibitor, to improve cognition; most interestingly, this takes effect at one fifth of the COPD dosage, for which it is an approved drug. At high doses PDE4 inhibitors have annoying side effects, but at low doses they tend to be trouble-free.
One effect of a PDE4 inhibitor is that it reduces cAMP. So a PDE4 inhibitor acts indirectly like an HCN blocker.
Not surprisingly recent research showed that low doses of Roflumilast improves sensory gating in those affected by this issue.
So rather than waiting for a brain selective HCN blocker, the potential exists to use a one fifth dose of Roflumilast today. This is something that should indeed be investigated across different types of cognitive dysfunction.
There are numerous dysfunctions that can impair cognition and they can occur in different diagnosis. For example impaired autophagy is a key feature of Huntington’s, impaired remyelination defines multiple sclerosis, low levels of nerve growth factor are a key feature of Rett syndrome. Less severe dysfunctions of these processes occur in entirely different conditions.
It is thought that people with Alzheimer’s might benefit from PDE4 inhibition. If it was me, I would try it in all types of dementia or cognitive loss of any kind.

PDE4 Inhibitors
There have been many mentions of PDE4 inhibitors elsewhere in this blog. They are broadly anti-inflammatory and anti-oxidant, but currently only widely used to treat asthma in Japan and COPD in Western countries. COPD is a kind of very severe asthma.
Traditionally a PDE4 inhibitor is thought of as drug used to block the degradative action of phosphodiesterase 4 (PDE4) on cyclic adenosine monophosphate (cAMP). That all sound complicated, just think of it as increasing cAMP.
Now cAMP is a messenger in many biological processes, one of which relates to PKA (Protein Kinase A). In autism we know that PKA, PKB and PKC are often disturbed. These PKs are very important because they have the ability to literally change the function of thousands of proteins in your body. This is similar to how epigenetic tags can switch on or switch off a particular gene. PKs, via a different mechanism we will look at in another post, change the function of proteins, so it is very important that you have the correct level of PKA, PKB and PKC.
We saw in a recent post that the Pitt Hopkins gene TCF4 is regulated by PKA and that under-expression of TCF4 is also a feature of some ID and schizophrenia. So more PKA, please.

You can use a PDE4 inhibitor to increase cAMP, which then increases PKA.

Other effects of PDE4 inhibitors
Today’s post is about sensory gating and the effect here of PDE4 inhibitors is via the effect of cAMP on those HCN channels in your tiny dendritic spines.
There are numerous other effects of PDE4 that may also be therapeutic. One interesting effect is that inhibition of PDE4 can mimic calorie restriction by activating AMPK/SIRT1 pathway.
Calorie restriction has just been shown in a large trial to be able to reverse type 2 diabetes, if initiated with a few years of the disease developing.
Humans have evolved based to periods of feast and famine. Periods of fasting may be therapeutic for many modern conditions.
Not surprisingly one side effect of PDE4 inhibitors is weight loss. Many psychiatric drugs cause troubling weight gain.

Acute administration of Roflumilast enhances sensory gating in healthy young humans in a randomized trial. 

Abstract

 

INTRODUCTION:

Sensory gating is a process involved in early information processing which prevents overstimulation of higher cortical areas by filtering sensory information. Research has shown that the process of sensory gating is disrupted in patients suffering from clinical disorders including attention deficit hyper activity disorder, schizophrenia, and Alzheimer's disease. Phosphodiesterase (PDE) inhibitors have received an increased interest as a tool to improve cognitive performance in both animals and man, including sensory gating.

METHODS:

The current study investigated the effects of the PDE4 inhibitor Roflumilast in a sensory gating paradigm in 20 healthy young human volunteers (age range 18-30 years). We applied a placebo-controlled randomized cross-over design and tested three doses (100, 300, 1000 μg).

RESULTS:

Results show that Roflumilast improves sensory gating in healthy young human volunteers only at the 100-μg dose. The effective dose of 100 μg is five times lower than the clinically approved dose for the treatment of acute exacerbations in chronic obstructive pulmonary disease (COPD). No side-effects, such as nausea and emesis, were observed at this dose. This means Roflumilast shows a beneficial effect on gating at a dose that had no adverse effects reported following single-dose administration in the present study.

CONCLUSION:

The PDE4 inhibitor Roflumilast has a favourable side-effect profile at a cognitively effective dose and could be considered as a treatment in disorders affected by disrupted sensory gating.


Background Information
Selective phosphodiesterase (PDE) inhibition has been considered as a very promising target for cognition enhancement.
Roflumilast is a PDE4 inhibitor that has been developed by Takeda for Chronic Obstructive Pulmonary Disease (COPD). In recent year, Maastricht University has been collaborating with Takeda to develop Roflumilast for cognitive impairments
In 2015 Takeda sold COPD indication of Roflumilast to AstraZeneca, and ownership of IP for treatment of cognitive impairment returned to Maastricht University.
Compelling clinical results
A single administration of Roflumilast improves episodic memory in mice, and in young and elderly healthy subjects at a non-emetic dose
As shown in the figure, healthy (A) and memory impaired (B) elderly subjects showed better performances in the delayed recall of the Verbal Learning Task after roflumilast

Key Features and Advantages
Opportunities to reposition a clinically-proven safe compound with a well-established pharmacology.
Compelling preclinical and clinical evidences showing that Roflumilast effectively deliver to the brain to produce robust cognitive enhancement.
Pro-cognitive effects at low dose (5 times lower than COPD indication), which allows to circumvent the emetic effects commonly observed with other PDE4 inhibitors
Maastricht University has a strong IP protection extending to at least 2033.

PDE inhibitors in psychiatry--future options for dementia, depression and schizophrenia?

Author information

Abstract

Phosphodiesterases are key enzymes in cellular signalling pathways. They degrade cyclic nucleotides and their inhibition via specific inhibitors offers unique 'receptor-independent' opportunities to modify cellular function. An increasing number of in vitro and animal model studies point to innovative treatment options in neurology and psychiatry. This review critiques a selection of recent studies and developments with a focus on dementia/neuroprotection, depression and schizophrenia. Despite increased interest among the clinical neurosciences, there are still no approved PDE inhibitors for clinical use in neurology or psychiatry. Adverse effects are a major impediment for clinical approval. It is therefore necessary to search for more specific inhibitors at the level of different PDE sub-families and isoforms.


The current study found that brain cells in PFC contain ion channels called hyperpolarization-activated cyclic nucleotide-gated channels (HCN) that reside on dendritic spines, the tiny protrusions on neurons that are specialized for receiving information. These channels can open when they are exposed to cAMP (cyclic adenosine monophosphate). When open, the information can no longer flow into the cell, and thus the network is effectively disconnected. Arnsten said inhibiting cAMP closes the channels and allows the network to reconnect.
Guanfacine can strengthen the connectivity of these networks by keeping these channels closed, thus improving working memory and reducing distractibility," she said. "This is the first time we have observed the mechanism of action of a psychotropic medication in such depth, at the level of ion channels."
Arnsten said the excessive opening of HCN channels might underlie many lapses in higher cognitive function. Stress, for example, appears to flood PFC neurons with cAMP, which opens HCN channels, temporarily disconnects networks, and impairs higher cognitive abilities.
The study also found alpha-2A adrenergic receptors near the channels that inhibit the production of cAMP and allow the information to pass through into the cell, connecting the network. These receptors are stimulated by a natural brain chemical  norepinephrine or by medications like guanfacine.
 “Guanfacine can strengthen the connectivity of these networks by keeping these channels closed, thus improving working memory and reducing distractibility,” she said. “This is the first time we have observed the mechanism of action of a psychotropic medication in such depth, at the level of ion channels.”
Yale has submitted a patent application on the use of HCN blockers for the treatment of PFC cognitive deficits based on the data reported in the Cell paper.

The full Yale paper:

The prefrontal cortex (PFC) is among the most evolved brain regions, contributing to our highest order cognitive abilities. It regulates behavior, thought, and emotion using working memory. Many cognitive disorders involve impairments of the PFC. A century of discoveries at Yale Medical School has revealed the neurobiology of PFC cognitive functions, as well as the molecular needs of these circuits. This work has led to the identification of therapeutic targets to treat cognitive disorders. Recent research has found that the noradrenergic α2A agonist guanfacine can improve PFC function by strengthening PFC network connections via inhibition of cAMP-potassium channel signaling in postsynaptic spines. Guanfacine is now being used to treat a variety of PFC cognitive disorders, including Tourette’s Syndrome and Attention Deficit Hyperactivity Disorder (ADHD). This article reviews the history of Yale discoveries on the neurobiology of PFC working memory function and the identification of guanfacine for treating cognitive disorders.

Molecular modeling suggests that, similarly to ZD 7288, nicotine and epibatidine directly bind to the inner pore of the HCN channels. It is therefore likely that nicotine severely influences rhythmogenesis and high cognitive functions in smokers.

Modulation of HCN channels in lateral septum by nicotine


Conclusion
I think many people stand to benefit from the drugs mentioned in today’s post, but for different biological reasons. A person with Pitt Hopkins may benefit from Roflumilast because it will upregulate PKA and then increase expression of their remaining TCF4 gene.
In a person with schizophrenia there are multiple reasons these drugs might help them and it will depend on which genes they have that are misexpressed (TCF4, DISC1 etc.).
In a person with idiopathic Asperger’s and impaired sensory gating it looks like the effect on HCN channels is what is important.
I think low dose Roflumilast has great potential for many. The Japanese drug Ibudilast very likely will provide similar benefits, but at what dosage?
PDE4 inhibitors do have side effects at higher doses in part because there are several different types of PDE4 (PDE4A, PDE4B, PDE4C etc) and different drugs effect different subtypes differently.
Ibudilast is used as a daily drug therapy for asthma in Japan and is being studied as a therapy for Multiple Sclerosis (MS) in the US.
Roflumilast is sold by Astra Zeneca as Daxas/Daliresp but at a high dose of 500mcg to treat flare ups of COPD (Chronic Obstructive Pulmonary Disease) it does cause troubling side effects, but it reduces your chance of dying from COPD.
The cognitive dose used in research is 100mcg. Higher doses had no cognitive/sensory gating benefit.
Further investigation of the ADHD drug Guanfacine should be made, because some of the people who benefit from a PDE4 inhibitor might get a similar effect from Guanfacine. People with Pitt Hopkins would not be in this category. A person with Asperger’s and impaired sensory dating should respond to Guanfacine, a cheap drug.
At the end of the day, choice of therapy will come down to side effects and cost. In the US, Roflumilast is expensive ($330), seven times more expensive than in some other countries; in the UK the price of the same 30 tablets is $50. One pack would be enough for 5 months at the suggested dose.




Thursday, 7 December 2017

Trajectories of Intellectual Development in Autism




Tracking IQ over a 3-4 year period, in 4 sub-groups of 2-8 year olds

Today’s post is about trajectories of intellectual development in autism, which I have to come to believe is the most important aspect of autism and certainly helps you understand where your type of autism fits in.
As regular readers may recall average IQ = 100 and the IQ scale fits a bell-curve, so most (68%) people have an IQ within the range 85-115.  2.1% of the general population have an IQ less than 70, which is the cut off for a diagnosis of MR/ID (Intellectual Disability).
There are special tests to measure IQ in non-verbal people and IQ testing is matched to your age; so the older a child gets the more there is expected from them in the test.
I do wonder how you can fairly test the IQ of a 2 year old with severe autism. So I think some testing in very young children may substantially underestimate IQ. 
A study was recently published taking data from the Autism Phenome Project run by UC Davies.



Even though the sample size is only a hundred, what makes it interesting is that it is a longitudinal study, meaning they collect data from the same kids over a period of many years.


They fitted data from the hundred kids into four groups and then took the average IQs within each group. The kids had IQ measured twice, not at exactly the same ages, but about 4 years apart. (The youngest at T1 was two years old and the oldest at T2 was eight)
I used their data and apply my interpretation. I do not think they made the most of their own data.
So the first group (black) are the Asperger’s kids who were 22% of the sample group.  This group started out at 2-3 years old with IQ just under 100 but in the next 4 years they raised their cognition at an above average rate, so that average IQ rose to 110. Not bad going.   Average IQ in the general population is 100.
Classic autism is the red group at the bottom and as expected their IQ starts out low and gets worse, because they add skills at a lower rate then NT kids, so even though they learn, their measured IQ falls. This group was 26%.  Even though the sample is very small at 100, this is close to my estimate of classic autism (SDA) being about 30% of all autism. In some countries you have to measure IQ to access services. Our behavioral consultant was not a fan, because the parents get upset when IQ goes down over time, so we never measured IQ. The red line is even lower than I had expected.
The green line I called responsive autism, because even though IQ is low it does not fall during the 4 years period where it was measured. This group account for 18% of the total. These children are acquiring new skills at a fair rate.
The good news is the blue line; in that large sub-group of 35%, the kids had some kind of “dysmaturation” at time 1, allowing them to make rapid cognitive improvement in the 4 years after their diagnosis (Time 1). They have gone from a technical definition of MR/ID to getting close to average IQ.
It would be great to see what happens at Time 3. I suppose if we wait 4 years we may find out.
I think some of the 35% (blue line) likely did not perform to their full ability at the first test (at time 1), for which there are numerous reasons, not liking/being familiar with the tester being an obvious one.  Based on other sources from this blog, I think it is about 15% of autism cases that make such a dramatic improvement to the age of eight.

In the above study the type of intervention chosen by parents (how many hours of ABA, speech therapy etc) had no correlation with IQ improvement from Time 1 to Time 2. It is your biology that matters most and to tweak that you need a little help from chemistry, as some regular readers have discovered. 

Counter Argument 
There is a alternative view that IQ is not important in ensuring favorable outcomes in autism; this does sound rather odd. It is a view put forward not just by the small, but vocal, group with Asperger's promoting their "neurodiversity" ideas, but also some well paid researchers. In my chart above I used Asperger's for the black line representing the people with average IQ. In the actual paper they do not call it Asperger's.


Intelligence scores do not predict success for autistic adults 

This is a very recent, rather light weight, article and would be much better if titled "Intelligence scores do not predict success for Aspies."   
Aspies do indeed share some biological problems with people with severe autism, but their daily life problems are much closer to those faced by people with Schizophrenia or Bipolar. A good example is suicide, where it is extremely common in bipolar, said to be 10% (as cause of death) in schizophrenia and ten times the "normal" level in Asperger's.  In severe autism the suicide rate is zero, they may have accidents but do not try to kill themselves.

In someone with Asperger's and an IQ of 120, boosting their IQ to 140 will likely not help them; it would just make them feel more different. In a ten year old with severe autism and an IQ of 50, a child who cannot figure out which way round to put on his T shirt, cannot tie his shoelaces and does not understand why you need to cut your finger nails, a boost in IQ to 80 would be transformative. 
The education of people with severe autism focuses on adaptive behavior, or life skills. These are key skills for semi-independent living. These are skills that children of average IQ just pick up from observing the people around them. People with impaired cognitive function cannot just pick up these skills, they need to be taught (again and again and again).  I spent three years trying to teach prepositions to my son Monty to the age of eight, using a special computer program created for other people with exactly the same difficulty. Once I started addressing cognitive function, with Bumetanide, from the age of 9, Monty figured out prepositions all by himself, without any teaching. I never even bothered to use the remaining language teaching software that I had paid $1,500 for, as a bundle, when he was four years old.  It is still sitting unopened on the shelf. 







Sunday, 26 March 2017

Sensory Gating in Autism, Particularly Asperger's


Sensory gating is an issue in autism, schizophrenia and ADHD.   It is the neurological process of filtering out redundant or unnecessary stimuli in the brain; like the child who sits in his classroom and gets bothered by the noise of the clock on the wall.  He is unable to filter out and ignore this sound. He becomes preoccupied by the sound and cannot concentrate on his work.
There are also sometimes advantages to not filtering out environmental stimuli, because you would have more situational awareness and notice things that others miss.
An example of sensory gating is the fact that young children are not waken by smoke detectors that have high pitched siren, but are waken by a recorded human voice telling them there is a fire and to wake up.
There may be times when sensory overload in autism is not a case of too much volume from each of the senses, but rather too many inputs being processed by the brain, instead of some just being ignored.  It is more a case of information overload.
Note that this blog has already covered hypokalemic sensory overload in some depth, which is treatable.
Much is known about sensory gating because it has long been known to be a problem in schizophrenia.
An EEG (Electroencephalography) test measures your brain waves / neural oscillations. Many people with autism have EEGs, but mainly those in which epilepsy is a consideration.
In the world of the EEG, the P50 is an event occurring approximately 50 millisecond after the presentation of an auditory click.  The P50 response is used to measure sensory gating, or the reduced neurophysiological response to redundant stimuli.
Abnormal P50 suppression is a biomarker of schizophrenia, but is present in other disorders, including Asperger’s, post-traumatic stress disorder (PTSD) and traumatic brain injury (TBI).
In more severe autism abnormal P50 suppression was found not to be present in one study.  This might be because cognition and the senses are dimmed by the excitatory-inhibitory imbalance.
More broadly, sensory gating is seen as an issue in wider autism and ADHD.

Correcting P50 gating
It is known that α7 nicotinic acetylcholine receptor (α7 nAChR) agonists can correct the impaired P50 gating. It is also known that people with schizophrenia have less expression of this receptor in their brains than typical people.

One short term such agonist is the nicotine released from smoking.  This likely contributes to why people with schizophrenia can be heavy smokers.  The effect is thought to last for about 30 minutes.
Clinical trials using Tropisetron, a drug that is a α7 nAChR agonist and used off-label to treat fibromyalgia, have shown that it can correct defective P50 gating and improve cognitive function in schizophrenia.

An alternative α7 nAChR agonist that is widely available is varenicline, a drug approved to help people stop smoking.
So you might expect varenicline to improve P50 gating and improve cognition. You might also expect it to help people with fibromyalgia and indeed some other people with chronic inflammation, as shown by elevated inflammatory cytokines.

You may recall that the α7 nAChR is the key to stimulating the vagus nerve and this should be beneficial to many people with inflammatory conditions (from arthritis to fibromyalgia).


Abnormalities in CHRNA7, the alpha7-nicotinic receptor gene, have been reported in autism spectrum disorder. These genetic abnormalities potentially decrease the receptor’s expression and diminish its functional role. This double-blind, placebo-controlled crossover study in two adult patients investigated whether an investigational receptor-specific partial agonist drug would increase the inhibitory functions of the gene and thereby increase patients’ attention. An electrophysiological biomarker, P50 inhibition, verified the intended neurobiological effect of the agonist, and neuropsychological testing verified a primary cognitive effect. Both patients perceived increased attention in their self-ratings. Alpha7-nicotinic receptor agonists, currently the target of drug development in schizophrenia and Alzheimer Disease, may also have positive clinical effects in autism spectrum disorder.


A role for H3 and HI histamine receptors
It has also been suggested that histamine plays a role in sensory gating via the H1 and H3 receptors.

It had also been thought H3 receptors could be targeted to improve cognition in schizophrenia, but that research really did not go anywhere.

Histamine H1 receptor systems have been shown in animal studies to have important roles in the reversal of sensorimotor gating deficits, as measured by prepulse inhibition (PPI). H1-antagonist treatment attenuates the PPI impairments caused by either blockade of NMDA glutamate receptors or facilitation of dopamine transmission. The current experiment brought the investigation of H1 effects on sensorimotor gating to human studies. The effects of the histamine H1 antagonist meclizine on the startle response and PPI were investigated in healthy male subjects with high baseline startle responses and low PPI levels. Meclizine was administered to participants (n=24) using a within-subjects design with each participant receiving 0, 12.5, and 25 mg of meclizine in a counterbalanced order. Startle response, PPI, heart rate response, galvanic skin response, and changes in self-report ratings of alertness levels and affective states (arousal and valence) were assessed. When compared with the control (placebo) condition, the two doses of meclizine analyzed (12.5 and 25 mg) produced significant increases in PPI without affecting the magnitude of the startle response or other physiological variables. Meclizine also caused a significant increase in overall self-reported arousal levels, which was not correlated with the observed increase in PPI. These results are in agreement with previous reports in the animal literature and suggest that H1 antagonists may have beneficial effects in the treatment of subjects with compromised sensorimotor gating and enhanced motor responses to sensory stimuli.


The aim of this study was to investigate an established rat model of decreased PPI induced by administration of the NMDA antagonist, dizocilpine and the reversal of this PPI impairment by the histaminergic H1-antagonist, pyrilamine. H1-antagonism is a potential mechanism of the therapeutic effects of the atypical antipsychotic, clozapine, which improves PPI following dizocilpine administration in rats as well as in patients with schizophrenia. In the present study we show that chronic pyrilamine administration prevents the PPI impairment induced by chronic dizocilpine administration, an effect that is correlated with a reduction in ligand-binding potential of H1 receptors in the anterior cingulate and an increase in nicotinic receptor α7 subunit binding in the insular cortex. In light of the functional anatomical connectivity of the anterior cingulate and insular cortex, both of which interact extensively with the core PPI network, our findings support the inclusion of both cortical areas in an expanded network capable of regulating sensorimotor gating.

The brain histamine system has been implicated in regulation of sensorimotor gating deficits and in Gilles de la Tourette syndrome. Histamine also regulates alcohol reward and consumption via H3 receptor (H3R), possibly through an interaction with the brain dopaminergic system. Here, we identified the histaminergic mechanism of sensorimotor gating and the role of histamine H3R in the regulation of dopaminergic signaling. We found that H3R knockout mice displayed impaired prepulse inhibition (PPI), indicating deficiency in sensorimotor gating. Histamine H1 receptor knockout and histidine decarboxylase knockout mice had similar PPI as their controls. Dopaminergic drugs increased PPI of H3R knockout mice to the same level as in control mice, suggesting that changes in dopamine receptors might underlie deficient PPI response when H3R is lacking. Striatal dopamine D1 receptor mRNA level was lower, and D1 and D2 receptor-mediated activation of extracellular signal-regulated kinase 1/2 was absent in the striatum of H3R knockout mice, suggesting that H3R is essential for the dopamine receptor-mediated signaling. In conclusion, these findings demonstrate that H3R is an important regulator of sensorimotor gating, and the lack of H3R significantly modifies striatal dopaminergic signaling. These data support the usefulness of H3R ligands in neuropsychiatric disorders with preattentional deficits and disturbances in dopaminergic signaling.



Conclusion

Other than nicotine, varenicline would seem a good potential therapy for sensory gating.  There are α7-nicotinic acetylcholine receptor agonists in development.
There are many H1 histamine antagonists.  Histamine release in the brain triggers secondary release of excitatory neurotransmitters such as glutamate and acetylcholine via stimulation of H1 receptors. Centrally acting H1 antihistamines are sedating.

H3 antagonists have stimulant and nootropic effects. Betahistine is an approved drug in this class, there are many research drugs.

The aim of this study is to investigate the role of the neurotransmitter histamine in sensory and cognitive deficits as they often occur in schizophrenia patients (e.g. hearing voices, planning and memory problems). The ideal location to conduct the study and to obtain a unique learning experience is at the Institute of Psychiatry, London, United Kingdom, where staff comprises of leading experts in the field of schizophrenia and Magnetic Resonance Imaging of pharmacological effects. Current pharmacological treatment of psychotic symptoms including sensory and cognitive deficits remains partially unsuccessful due to side effects and treatment resistance. The neurotransmitter histamine seems to be a very promising target for new treatments. It has been found that histamine neurotransmission is altered in brains of schizophrenics, which may contribute to both the hallucinatory and cognitive symptoms. However, this specific role of histamine has not been investigated before. I will assess the effects of increased histaminergic activity, by administration of betahistine to healthy volunteers, on performance (sensory gating, executive functioning or planning and memory) and associated brain activity using fMRI. Altered performance and brain activity would support the importance of histamine in schizophrenia and would provide a research model and target for new treatments.



Friday, 11 March 2016

Treating Adults with Autism?





 
 




Almost the entire focus of treating autism is targeted at young children; only rarely do you hear about clinical trials involving adults, yet we are often reminded that autism is a lifelong condition.

For those of you that read the proposed guidelines to drug companies developing autism therapies, this issue raised its head again.  Will therapies effective in children be effective in adults (and vice versa)?

There are many issues here.  On the one hand there is great caution about giving drugs to very young children, but there is the realization that many therapies may only be effective if given at an extremely young age.

I only started treating the biological dysfunctions in Monty, now aged 12, when he was 9 years old.  By good fortune the first therapy (bumetanide) I tried was highly effective, otherwise this blog would not exist.

Had that Bumetanide clinical trial been published 5 years earlier, would I have given my then 4 year old son that same drug?  Probably not.

With what I now know, I would be happy to give Bumetanide as soon after birth that autism was even suspected.  (To the trained eye, this is but a few months old)


The effect of no treatment

For three years I have been developing a personalized autism treatment, Monty’s Polypill, and I think it works well, but a few weeks ago we decided to see what happens with no treatment at all.

This did provide some useful insights into treating young adults, as opposed to young children.

The first thing is that all the new skills that have been acquired, at close to neurotypical speed, in the last three years, did not just fade away. 

The old obvious repetitive behaviors/stimming/stereotypy did not return, but more subtle new ones did.  (no NAC)

He could still play his piano nicely with his teacher, but his interest in playing out of lessons faded away as did his skill level out of lessons.

He showed an occasional aversion to doing anything new, for example when his assistant came in the afternoon, I told him to go outside and meet her.  He could happily open the front door (his normal routine) but was not able to walk though it and meet her by the gate.  (no statin)

When I offered to go with him, he had a brief tantrum. 

He started asking permission to do things he knew how to do, which some people saw as a positive.  When lying in bed at 9pm he called out “Mum can I read a book”, rather than just picking one from the shelf by his bed and when at a small birthday party he had to bend down to light the candles, he turned round and said “can I squat?”  Most people thought that was good use of vocabulary, I was thinking “just do it”.  (statin effect)

I received comments like “how patient he is”, or at school  words like “peace” and “peaceful”.  I was thinking how passive he was. (no bumetanide/low dose clonazepam)

While there was no glaring loss of cognitive function and spelling tests and maths test at school were not showing any deficit, I noticed a loss of ability to develop new skills. 

We use an excellent online program called Math Whizz and one thing we were learning was to how to use the calendar.

Typical questions would be:-

“What date is the second Friday in May?”
“What date if the first Monday in December?”
“What day (of the week) is the last day in June?”

You first have to click on “May” to get the calendar to turn to the correct month and then you can figure out the answer.

To my surprise, while still on the Polypill, Monty was getting pretty good at this exercise, on his first attempt.

However, a few days later, when we tried with no Polypill, he was struggling and as the days passed he got worse and worse.  (chloride levels gradually rising?)

There was even a return of the sensory overload that causes many problems for some people with autism and also Asperger’s.  Even the sound of a crow became disturbing.  Both Acetazolamide and Bumetanide are used to treat Hypokalemic Periodic Paralysis, which is a more severe form of Hypokalemic Sensory Overload and at least some types of Autistic Sensory Overload are a subset of this.

After two weeks of Bumetanide and Potassium the sound over-sensitivity has gone again.  It did not go away immediately.


Pleiotropic effect of Verapamil

While I initially identified the calcium channel blocker, Verapamil, as an effective inhibitor of aggression and SIB triggered by allergy/mast cell degranulation, I was once asked if I thought Verapamil might have pleiotropic effects in Monty.  Having stopped using Verapamil and then restarted it, all outside of the problematic allergy season, I have all the proof I need in my n=1 case.  Life is better with a little Verapamil; his calcium channel dysfunction goes beyond those in mast cells.

Verapamil was the last element of the Polypill that I re-started; I was rather hoping it would show no effect outside the allergy season.  Only after adding it back did things really return to what has become our "normal".

There is after all a vast amount of evidence linking calcium ion channel dysfunction and autism.



My Verdict

I think many people would be very happy to have a passive child, who can sit for two hours in restaurant.

Most people do not notice the fading of good behavior, because their overriding concern is the lack of any “bad” behavior.  So a bad behavior is followed by a “is this better?”, rather than a “Wow, do you know Monty did today …”.

I prefer a child who can learn, even if that means he may get fed up from time to time, and show it.

I was pleased to come home earlier this week and find Monty sitting alone playing his piano beautifully (no prompting, no reinforcement needed), with his music book laid out in front of him, playing one melody, turning the page and playing the next one, while his big brother had gone upstairs to play his computer games, because little brother does not need him. 

  

Intervention in Adults

Other than halting self injurious behavior (SIB), I am far from convinced that most people would even notice the difference if you took an adult with classic autism and started to treat him.

At that age, passive and patient is what most caregivers want.

So I see little prospect that “corrective biological therapy” will ever be initiated in many adults with more serious autism;  they will continue to be “tranquilized”.

Many adults with Asperger’s and high IQ do their own research and self-treat; some even read this blog. For them, even a small biological "improvement" can have a welcome effect on well-being. Good for them.



Intervention in Young Children

The best way forward is to intervene immediately after diagnosis.  In the US/Canada that might be two years old, but more like four years old in Europe.


If I was a Roche or Novartis, this would be my target:- non-verbal, non toilet-trained toddlers who make no eye contact, possibly cry a lot and tend to be kept at home.