UA-45667900-1
Showing posts with label Agmatine. Show all posts
Showing posts with label Agmatine. Show all posts

Friday 2 June 2023

Nitric Oxide in Autism - nNOS as a precise target for treatment?

Today’s subject is not new to this blog, it is Nitric Oxide (NO) and how by reducing expression of the enzyme nNOS, which produces NO in neurons, you may reduce the severity of autism symptoms.  Monty has actually been reducing nNOS for several years using Agmatine.

The research is from Israel, which is better known for autism research into cannabis.

Several posts in this blog refer to NO:

https://www.epiphanyasd.com/search/label/Nitric%20Oxide

One introduces nitrosative stress, which is also covered in my book.

Nitrosative Stress, Nitric Oxide and Peroxynitrite


Nitric oxide performs many functions within the body.

I did make the graphic below a few years ago to show what happens to Arginine in the body and the role of my supplement Agmatine.

Arginine is converted to Nitric Oxide in the body by one of 3 enzymes (iNOS, eNOS and nNOS).

eNOS (endothelial nitric oxide synthase) will help expand blood vessels, lowering blood pressure and potentially boosting exercise endurance.

nNOS (neuronal nitric oxide synthase) is involved in the development of nervous system. It functions as a neurotransmitter important in long term potentiation and hence is likely to be important in memory and learning. nNOS has many other physiological functions, including regulation of cardiac function and peristalsis and sexual arousal in males and females.

iNOS (inductible nitric oxide synthase), involved in immune response, and produces NO as an immune defence mechanism, as NO is a free radical with an unpaired electron. It is the proximate cause of septic shock and may function in autoimmune disease.

 

I have used Agmatine as a supplement in my PolyPill for many years. It reduces iNOS and nNOS while increasing eNOS.

Note that you can use polyamines to induce autophagy and this idea is now used to improve cognition in people with dementia. Wheat seedlings and wheat germ are a rich source of polyamines and can simply be added to bread to make it counter some dementia.

 


Nitrosative stress

Nitrosative stress is the lesser known twin of oxidative stress. Both are generally bad for you (unless you have cancer, because cancer cells are vulnerable to it).

Nitrosative stress and oxidative stress both feature in most autism. The more severe the autism the higher the level of nitrosative stress.  Where there is nitrosative stress, expect to also see unusual amounts of NO.

Peroxynitrite from nitrosative stress can be quenched by Leucovorin, AKA calcium folinate. This is Dr Frye’s therapy for folate deficiency, but as I have mentioned previously it also has totally unrelated potential benefits. 

Now to see what the Israelis have been up to.

 

Israeli study reveals potential method for reducing symptoms of autism

Researchers find a direct link between levels of nitric oxide in the brain and condition in mice; reducing the amounts lowers indicators and behaviors. 

Researchers from the Hebrew University of Jerusalem have published a first-of-its-kind study revealing a potential future method for reducing the symptoms of autism among those diagnosed with the common developmental disorder.

Dr Haitham Amal and his team from the School of Pharmacy in the Faculty of Medicine discovered a direct connection between levels of nitric oxide (NO) in the brain and autism, the university said in a statement.

The study, conducted on mice and published Monday in the peer-reviewed Advanced Science journal, demonstrates that autism indicators increases as NO increases in the brain, and that autism indicators and behavior decrease as the levels of NO in the brains of murine models of autism are lowered “in a proactive and controlled manner.” 

 

“Our research showed – in an extraordinary way – that inhibiting the production of NO, specifically in brain neuron cells in mouse models of autism, causes a decrease in autism-like symptoms,” he said. “By inhibiting the production of NO on laboratory animals, they became more ‘social’ and less repetitiveness was observed in their behavior. Additionally, the animals showed interest in new objects and were less anxious. Finally, the decrease in NO levels led to a significant improvement in neuronal indices.”

 

Scientists identify a new molecular mechanism for autism - Advanced Science News

 

After having tested their hypothesis in living mice, the researchers turned their focus to cell cultures. To begin with, they cultured neuronal cells from normal and mutant mouse models. Increasing and decreasing levels of nitric oxide in these cultures led to similar biochemical changes as those seen in experiments with mice.

Having investigated the impact of nitric oxide in mice, Amal’s team sought to confirm their findings in humans. First, they tested neurons that were derived from the stem cells of people with mutations in the SHANK3 gene, living with ASD. These neurons had high levels of proteins that help diagnose stress caused by nitric oxide. When researchers treated these neurons with a nitric oxide inhibitor, the levels of these proteins subsided.

Thereafter, Amal’s lab measured the levels of the same proteins in samples of blood plasma taken from children with ASD. They wanted to validate their results in this demographic. Compared with unaffected children, those with ASD had higher levels of biomarkers that indicate nitric oxide stress.

Deeper analyses revealed that the production of numerous proteins responsible for neuronal development was increased or decreased, differing from their normal levels. Further, using computational analyses, the researchers found that genes involved in several mechanisms connected to ASD development were overrepresented. These genes are key to severing connections between neurons as well as driving inflammation and oxidative stress.

“This research is a significant breakthrough in autism research with the first direct connection made between an increase in the concentration of [nitric oxide] in the brain and autistic behavior,” said Amal. “I am hopeful that with our new understanding of the [nitric oxide] mechanism, we can begin to develop therapeutic drugs for ASD and help millions of children and adults living with autism around the world.”

Amal’s team is exploring the impact of nitric oxide in many more models of autism. “The good news is that we are exploring very similar data,” added Amal.

 

 

The NO Answer for Autism Spectrum Disorder

Autism spectrum disorders (ASDs) include a wide range of neurodevelopmental disorders. Several reports showed that mutations in different high-risk ASD genes lead to ASD. However, the underlying molecular mechanisms have not been deciphered. Recently, they reported a dramatic increase in nitric oxide (NO) levels in ASD mouse models. Here, they conducted a multidisciplinary study to investigate the role of NO in ASD. High levels of nitrosative stress biomarkers are found in both the Shank3 and Cntnap2 ASD mouse models. Pharmacological intervention with a neuronal NO synthase (nNOS) inhibitor in both models led to a reversal of the molecular, synaptic, and behavioral ASD-associated phenotypes. Importantly, treating iPSC-derived cortical neurons from patients with SHANK3 mutation with the nNOS inhibitor showed similar therapeutic effects. Clinically, they found a significant increase in nitrosative stress biomarkers in the plasma of low-functioning ASD patients. Bioinformatics of the SNO-proteome revealed that the complement system is enriched in ASD. This novel work reveals, for the first time, that NO plays a significant role in ASD. Their important findings will open novel directions to examine NO in diverse mutations on the spectrum as well as in other neurodevelopmental disorders. Finally, it suggests a novel strategy for effectively treating ASD.

 


 

NO Donor Administration Induced ASD-Like Behavior in WT Mice and Enhanced the ASD Phenotype in Mutant Mice 

NO Inhibition Reversed Synaptophysin Expression and Reduced Nitrosative Stress in Primary Cortical Neurons Derived from the Mutant Mouse Model 

nNOS Inhibition Restores the Expression of Key Synaptic Proteins Using iPSC-Derived Cortical Neurons from Patients with SHANK3 Mutations

Elevation of Nitrosative Stress Biomarker and Reprogramming of the SNO-Proteome in the Blood Samples of ASD Children

 

Our study is designed to examine the effect of high levels of NO on the development of ASD. This work shows that NO plays a key role in ASD. Importantly, this was confirmed in cellular, animal models, human iPSC-derived cortical neurons, as well as in clinical samples. Since the molecular mechanisms underlying ASD pathogenesis remain largely unknown, we provided a new mechanism that shows that NO plays a key role in ASD pathology at the molecular, cellular, and behavioral levels. An increase of Ca2+ influx in ASD pathology, including in human and mouse models of Shank3 and Cntnap2(-/-), has already been reported. Ca2+ activates nNOS, which then leads to massive production of NOAberrant NO production induces oxidative and nitrosative stress, leading to increased 3-Ntyr production and aberrant protein SNO. Our data showed an increase in NO metabolites and 3-Ntyr production in both mouse models of ASD (Shank3Δ4-22, Cntnap2(-/-)). Increased 3-Ntyr was found in iPSC-derived cortical neurons from patients with SHANK3 mutations, SHANK3 knocked down in SHSY5Y cells, and in human ASD plasma samples. The elevated levels of 3-Ntyr in our study are consistent with previous postmortem examinations of ASD patients showing the accumulation of this molecule in the brain. 

Collectively, our results show for the first time that NO plays a key role in ASD development. We found that NO affects synaptogenesis as well as the glutamatergic and GABAergic systems in the cortex and the striatum, which converge into ASD-like behavioral deficits. This work suggests that NO is an important pathological factor in ASD. Examining NO in diverse mutations on the spectrum as well as other neurodevelopmental disorders and psychiatric diseases will open novel future research directions. Finally, this is a novel experimental study that establishes a direct link between NO and ASD, leading to the discovery of novel NO-related drug targets for the disorder and suggesting nNOS as a precise target for treatment.

 

The trigger for the excess NO production is put down to the increase of Ca2+ influx, which really is at the core of autism.  This was explained in the post about IP3R long ago. 

Is dysregulated IP3R calcium signaling a nexus where genes altered in ASD converge to exert their deleterious effect?

 

The simple answer appears to be YES.

 and in later posts:

https://www.epiphanyasd.com/search/label/IP3R

  

Conclusion

For autism a little less nNOS, please.

The researchers used the selective neuronal nitric oxide synthase inhibitor 7-nitroindazole.

Nitroindazole acts as a selective inhibitor for neuronal nitric oxide synthase, an enzyme in neuronal tissue, that converts arginine to citrulline and nitric oxide (NO).

7-Nitroindazole is under investigation as a possible protective agent against nerve damage caused by excitotoxicity or neurodegenerative diseases. It may act by reducing oxidative stress or by decreasing the amount of peroxynitrite formed in these tissues. These effects are related to the inhibition of type 1 nitric oxide synthase. However, anti-convulsive effect is derived from some other mechanisms. 

For older folks with higher blood pressure, a little more eNOS please; indeed, the explosive nitroglycerin is also used as a life-saving drug that induces eNOS production in someone about have a heart attack. The resulting NO widens blood vessels and so increases blood flow.


Methylene blue was mentioned in a recent comment in regard to nitric oxide (NO)

Methylene blue (MB) inhibits endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), guanylate cyclase, and cytokines such as tumor necrosis factor-α (TNF-α). MB restores vascular tone due to the selective blockade of both guanylate and iNOS.

MB should increase blood pressure.

Some people with autism respond well to MB. This likely is unrelated to its effect on NO and might well be due to its numerous anti-inflammatory effects (inhibiting NLRP3 inflammasome etc).










 

Thursday 5 November 2020

Lethargy and Autism

 

That alternative world, where you fix things when they are not working


I do sometimes forget the world that most people live in, when it comes to (not) understanding and (not) treating autism.

I decided to write this post on lethargy and autism, after being prompted by a friend who contacted me and told me that his son with autism is very lethargic (physically and mentally). I replied with the suggestion that he try a little scoop of Agmatine Sulphate.  Now his son is able to go for long walks, without constantly wanting to stop for a rest.  The Dad asked me to share his positive experience with Agmatine.

A few years ago, this boy was diagnosed by Dr Kelley with mitochondrial dysfunction.  People with mitochondrial dysfunction should indeed have poor exercise endurance, this is because they lack the enzymes needed in a process called oxidative phosphorylation (OXPHOS).  OXPHOS is the metabolic pathway in which cells use enzymes to oxidize nutrients, thereby releasing the chemical energy in the form of ATP.  If you run low on ATP you need to sit and take a rest.

You can run low on ATP for reasons other than a lack of these mitochondrial enzyme complexes. You also need enough glucose and oxygen.

Agmatine has numerous modes of action.  It affects the following (and more): -

·         Neurotransmitter receptors and receptor ionophores. Nicotinic, imidazoline I1 and I2, α2-adrenergic, glutamate NMDAr, and serotonin 5-HT2A and 5HT-3 receptors.

·         Ion channels. Including: ATP-sensitive K+ channels, voltage-gated Ca2+ channels, and acid-sensing ion channels (ASICs).

·         Membrane transporters. Agmatine specific-selective uptake sites, organic cation transporters (mostly OCT2 subtype), extraneuronal monoamine transporters (ENT), polyamine transporters, and mitochondrial agmatine specific-selective transport system.

·         Nitric oxide (NO) synthesis modulation. Both differential inhibition and activation of NO synthase (NOS) isoforms is reported.[9][10]

·         Polyamine metabolism. Agmatine is a precursor for polyamine synthesis, competitive inhibitor of polyamine transport, inducer of spermidine/spermine acetyltransferase (SSAT), and inducer of antizyme.

·         Protein ADP-ribosylation. Inhibition of protein arginine ADP-ribosylation.

·         Matrix metalloproteases (MMPs). Indirect down-regulation of the enzymes MMP 2 and 9.

·         Advanced glycation end product (AGE) formation. Direct blockade of AGEs formation.

·         NADPH oxidase. Activation of the enzyme leading to H2O2 production.[11]

 

I did make the chart below a couple of years ago to figure out why Agmatine would give such an energy boost, and see how all these substances fit in with each other.  My conclusion was that an increase in endothelial nitric oxide was a plausible explanation, since the effect is fast.

Agmatine increases the enzyme eNOS which the leads to nitic oxide (NO) being produced in endothelial cells, this triggers a series of steps that results in vascular relaxation, which means more blood flow.

More blood flow means more glucose and oxygen to fuel mitochondria to make ATP.

 


When I did a quick Google search for “Lethargy and Autism”, I was surprised to find an entirely different explanation from the “old world”, where autism is still untreatable, at the UK’s National Autistic Society.

 

Autistic fatigue - a guide for parents and carers

Exhaustion (fatigue) and then burnout can happen to anybody. Being autistic can make fatigue and burnout more likely, due to the pressures of social situations and sensory overload. If your child or the person you care for is experiencing fatigue or burnout, helping them to manage their energy levels is essential, as this guide explains. 

There are various things that can cause autistic fatigue. Autistic adults suggest several causes, including: 

·        sensory overload 

·        dealing with social situations 

·        masking or camouflaging their autistic traits

·        suppressing stimming 

·        a sense of not meeting other people’s/society’s expectations of them.

Changes in your routines or day-to-day life, such as a change of school or job, can increase anxiety and can be additional causes for autistic fatigue and burnout.

 

What can I do if the person I care for is experiencing autistic fatigue and burnout?

Use energy accounting

Energy accounting is a system used to set manageable limits on your energy levels so you do not deplete yourself to the point of burnout. 

Help your child or the person you care for to set a limit on how much energy they have in a day or week and estimate how much certain activities drain them. Also work out how much certain activities energise them. 

You can then try to plan and balance their activities and energy over a day or week to try and manage stress limits. Make sure you build in time for relaxation and recovery. 

 

Time off and rest/relaxation

Whether you use energy accounting or not, time off from work or school and other high-stress activities is key to managing stress levels. Ensuring time for activities/interests that re-energise and promote relaxation is key. This could be connecting with family and friends or enjoying hobbies or interests. 

 

Time without having to mask

Autistic people often feel the need to hide or mask their autistic traits in public, for example by suppressing the urge to stim. It can be important to factor times into your child’s day for things like stimming, somewhere they feel comfortable and able to do so.

  

Conclusion

Lethargy with autism in this blog is a biologically treatable condition.

Taking time off to rest is not a cure for lethargy, it is just a coping strategy.

Why just cope, when you can live to your full potential?

The bunny managed to figure this out. (fit alkaline batteries)

 


You would think that hyperactivity would be more often a problem than lethargy in those with autism, but that is another story.




Tuesday 8 January 2019

BHB + C8 in Autism, a Work-in-Progress



The potential benefit of the ketone BHB in autism was covered extensively in earlier posts.  It looks like different people may benefit for entirely different reasons and some may not benefit at all. 

Some MCT oils, taken as precursors to BHB, can actually make people worse.


Measuring ketones and glucose in blood


Click for a summary of the previous posts.

I know that some readers of this blog have found that BHB/C8 does indeed provide a benefit in their specific type of autism.  The benefit seems to vary, but given all the biological modes of action of the ketone BHB that is not surprising.  Increased speech is a frequently noted benefit.
My initial combination of Ketoforce plus C8 continues to be effective.
Substituting a cheaper MCT oil containing both C8 and C10 (Bulletproof XCT oil), was less effective and after a matter of weeks produced a negative effect. It appears that C10, after a while, can produce mild anxiety and agitation in some people. In our case this goes away when stopping the C8+C10 MCT oil and then reappears restarting it.
When it comes to C8, it appears that not all food grade 98% C8 products are actually what they claim to be. This is a recurring theme with all supplements, they lack the quality control you get with pharmaceuticals.
Our reader Yi did at one point raise the issue of BHB causing diuresis. We also experienced this and much more so with the “mixed” C8+C10 MCT oil, rather than the “pure” C8.
The combination of increased diuresis and all the sodium, magnesium, potassium in the BHB salts may very well create an issue with electrolyte levels. Potassium does seem to be the most critical one to monitor.
Different BHB products contain very different amounts of sodium, magnesium, potassium and so it is unwise to simply substitute one for another.
Our reader Agnieszka did experiment with different BHB products and found that, based on urine testing, Ketoforce was the most effective. I also think this is likely the best choice.  Ideally you would measure BHB in blood and devices are available (see above photo).
For people living in Europe, BHB products have fallen foul of EU legislation that requires new supplements to be approved before they can be sold in the European Union. As BHB is a recently introduced supplement, it cannot legally be sold in the EU until someone pays for it to be approved. This means that in EU countries that strictly apply the rules, like the UK, you cannot buy BHB, but in other EU countries you still can.
The same legal status regarding BHB in the EU also applies to Agmatine.
Another oddity is that Melatonin is banned as a supplement in the UK, but not other EU countries; it is a very popular supplement in North America.




Thursday 16 August 2018

Summer in the City



Typical children usually enjoy their long summer break and once they are teenagers they do not need much supervision; that is not the case with people with more severe autism. Most kids with this kind of autism are counting the days till they can go back to school. 
 In the US, many such people have an extended school year, which keeps them occupied, but this does not exist in most of the world.  The US actually has a very short standard school year, just 180 days; in Japan they are in school for 220 days a year.


This year Monty, now age 15 with ASD, has been much more energetic since he started taking a little scoop of Agmatine before breakfast, 11 months ago. He now completes a lot of physical activities, by anyone’s standards.
He enjoyed running at school last year and was good at it, so I started taking him to a running track in the holidays. It is 1.2km (0.75 miles) long and runs through a forest, so it is mostly out of the sun.
The first step was to decide not to run with him; one risk of having so much 1:1 attention is that you grow up not being able to cope without it.
People with autism do wander off, they get side-tracked, they can get into awkward situations with strangers, but at the same time you do want your child to develop independence. Monty had a yellow shirt on and by standing in the centre of the running circuit; I could see him much of the time through the trees. Since the circuit has a red surface and most people are running the same way around it, it would be hard to get lost.
Monty never got lost and just counted out loud the number of each lap, as I waited at the start point. We soon agreed that running four times round the track is what he would do.  After a pause and a shower it was off for swimming and he now does this quite seriously.
Monty’s school assistants come in the summer, and they also got into the exercise program.  Monty never mastered riding a bicycle till this summer, but after two months of practise in the mornings, today he made a 7km (4 mile) circuit round a lake.
Another day he made two laps (14km /8 miles) on rollerblades.
This level of activity might be nothing special for a typical teenager, but it is a big change for Monty.  It is also very hot - 33 Celsius/92 Fahrenheit, when he is out.
It is much easier to be accepted by typical teenagers when you have some skills they can relate to, even if big differences remain.
One morning Monty was out with his assistant where a basketball team were having their training run on another circuit. These were large 2m (6 foot 6 inches) tall giants, compared to Monty. What would they make of his intrusion into their training? Monty’s assistant explained to the basketball coach and then every time Monty completed a lap and shouted out the lap number the older boys cheered.  That is what I call inclusion and everybody was happy.
Exercise has numerous benefits and where we live most children are very active; overweight kids are a tiny minority. Some do take it to extremes; Monty’s friend from the Netherlands came to visit and told us that her 16 year old sister is cycling to Rome (1,600 km or 1,000 miles). As you might expect, they are both tall and slim.





Thursday 24 May 2018

An Autism Case History - EpiphanyASD in a Pill





It is not quite that easy!


Initials:                        LT
Age:                           14 years old

Year
of Birth:              2003

Sex:                            Male

Date:                           24 May 2018

Diagnosis      
LT was diagnosed with autism in January 2007, at a multi-disciplinary assessment in London, at the age of 3 years 6 months.  At that time, LT was non-verbal but had some emerging vocalization. No tics, no seizures, no unusual physical features, no self-injury, no sleep disorder, no feeding disorder. Toilet trained. Very limited attention span. No imaginative play. Liked to jump.

IQ not tested.
No CARS (Childhood Autism Rating Scale) assessment.
TEACCH and PECS were recommended as therapy.
Further medical testing or referrals – none recommended (standard practice in the UK) 

LT has an older brother who is intelligent, multilingual and highly social.
Comorbidities
GI disease:                   None
Epilepsy:                       None
Asthma:                        Yes, mild asthma from early childhood
Allergy:                         Pollen
Sleep disorder:             None 

General Health          
Very healthy and almost never ill. When visiting his GP at the age of 14 the doctor commented how she had not seen him for three years, whereas she has seen his older brother twice a year.

Born via a planned caesarean section, without complications, APGAR score was 10.


Growth                      
Body is well proportioned, no obvious macro/microcephaly. No physical features of any syndromes/metabolic anomalies.

However, LT was initially on the 90th percentile for height and dropped to the 20th by the time he was 5 years old. He was a very muscular baby.  At the age of 10 his bone age (X ray of left hand) was estimated to be two years delayed.  IGF-I was normal, FT3 was slightly above the reference range.

At birth he fitted the research description of hyperactive pro-growth signaling pathways, even though there was no macrocephaly.

Regression at age 8              
Aged 8, a big regression took place with self-injurious behavior (SIB) and aggression to others. He would slam his head into walls, other people, car windows, punch himself etc, but he was still small enough to be physically controlled/restrained by larger adults. He could not be controlled by smaller/older adult family members.

This aggression could occur immediately on waking until finally falling asleep at night, it was not predictable.  At that time in the afternoons, LT had a male 1:1 assistant with experience from a school for severe autism and in the mornings a very firm-minded tall female 1:1 assistant. LT’s father imposed a policy of zero acceptance of any SIB, to avoid it becoming a permanent acquired behavior. SIB was physically blocked.
The regression was triggered by the departure of his long time full-time 1:1 female assistant. It was an emotional trauma.  Occasional visits from her just made the situation worse.  In response no drugs were used, just a consistent firm behavioral approach. Over a ten month period the situation slowly stabilized, but skills were lost and bad habits (SIB) were acquired.  LT subsequently did see his assistant again and sees her regularly to this day.
Throughout this time his classmates and teacher at school were remarkably understanding. He was never excluded from school. His assistant ensured nobody at school got hurt.
Since assistants will inevitably come and go, from the age of 8 LT has had two part-time assistants rather than one full time.  As and when subsequent assistants have left, he has not had any troubling emotional reaction. 

Summer-time raging and loss of cognitive function
Summertime raging with self injurious behavior and aggression to others developed from the age of 9.

Later it became clear that in addition there was a loss of cognitive function during the summer months. This became evident once it was possible to teach mental math, from aged 9 onwards.  For example, at the age of 11, simple verbal tasks like 7 x 8 = ?, that had previously been mastered, could not be answered in the summer months.

The raging and cognitive loss were ultimately treatable.

Winter-time raging

Summertime raging was resolved and then winter-time raging developed. This was traced back to the cytokines released to signal reabsorption of milk teeth roots (a proves that takes months) and the eruption of permanent teeth. It was not tooth ache, i.e. pain. LT has retarded bone age and apparently this applied to his teeth development as well.

He lost his later milk teeth always in the winter.

The winter time raging did not respond to his summertime therapy, but responded very well to a low dose of ibuprofen. Summertime raging does not respond to Ibuprofen 

PANS-like episode aged 13
At Christmas time, following a minor viral infection, LT developed acute onset profound verbal tics. LT does not have Tourette’s type autism and had never exhibited such behavior previously. The tics were treated as a PANS/PANDAS flare-up with 5 days of prednisone. Over a two week period the tics faded away and have never returned.

Intellectual disability 
IQ was never measured, LT’s ABA consultant said there was no point, but the very much more rigorous ABBLS was completed, see below. Evidently, prior to pharmacological treatment at the age on 9, there was a 5 year developmental delay.
With hindsight, IQ pre-treatment was probably in a similar range to Down Syndrome (DS) meaning less than 70.

At the age of 14, LT’s academic performance now puts him in the top half of his class of 12 year old neurotypical peers. His grades are mainly As, with maths and computing being particular strengths. 

Other testing:    No genetic testing, MRI or EEG.

Family History:          

LT has a 7 years younger, very distant cousin who is non-verbal with autistic disorder. They have shared great great great maternal grandparents. The cousin has parents who are both doctors and were high academic achievers as medical students.

The father’s family has a large number of Cambridge-educated doctors on both the grandmother's and grandfather's side; one gave his name to the scale still used to assess severity of Ulcerative Colitis and helped develop the first H2 anti-histamine drug. The father and uncle are engineering graduates from top universities. One distant cousin was a math’s protégé at Oxford University.  One distant cousin has bipolar. One uncle has type-1 diabetes.

The mother is an academic alpha female in a stressful creative profession. The maternal grandmother was a teacher and grandfather was an army Colonel.
The maternal grandmother and her children all had premature hair greying, which may be linked to Bcl-2 expression and Wnt signaling, both implicated in autism. Thickness and greying of hair share biological mechanisms, which overlap with those controlling development of dendritic spines. LT and his father have very dense hair, mother has thin hair.
Maternal grandparents both smoked and the grandfather has COPD (Chronic Obstructive Pulmonary Disease). Oxidative stress is a core feature of COPD, because anti-oxidant genes are silenced; these effects are known to be heritable via epigenetic tags. 
The family fits the high IQ  type of autism (some autism genes are linked to intelligence and some bipolar genes are linked to creativity, which helps explain why some actors/artists are bipolar) with oxidative stress raised during pregnancy, anti-oxidant response possibly weakened, no oxytocin surge during delivery and no microbiota transfer at birth (C-section delivery).  No pets at home during pregnancy (a good source immuno-stabilizing bacteria).  No obesity in the family.

Education
LT has attended the same mainstream international school, following the English curriculum, since the age of 3. Class sizes are very small, about 12 pupils. From the age of 4 he has had a 1:1 assistant eight hours a day, throughout the year.
LT commenced a parent-managed ABA (Applied Behavioral Analysis) inspired home program shortly after diagnosis.  Both parents attended a 2 day training program to learn the use of PECS (Picture Exchange Communication System).  PECS was applied and shortly thereafter LT became partly verbal at the age of 4, speaking single words.
1:1 assistants were recruited mainly from the local University and trained to apply ABA, with elements from Floortime and the Canadian Hanen Program. There was some supervision from US-trained Behavioral Consultants that would fly in for training. A large collection of specialist training material was acquired from the US. 
Extensive use was made of professional (i.e. expensive) special needs language teaching software (Laureate Learning) from the age of 4 until 8 years old.
Later, web-based reading software (Headsprout) was used and years later special maths teaching software (Math Wizz). Neither are made for special needs, but both are very compatible with an ABA approach.
LT spent an extra year in kindergarten and in primary/junior school was held back 2 years at the age of 9, following a request from the parents.
In primary school (English system) he went Year 1, Year 2, Year 3 (started bumetanide) then back to Year 2, then Year 3, Year 4, Year 5, Year 6 and currently attends Year 7 in secondary/high school
The equivalent in the US system would have been, he went K, 1st, 2nd, then 1st, 2nd 3rd, 4th etc.
From the age of 13, LT attended school full time, prior to that he attended only the morning and then went home after lunch to work 1:1 with his assistant for three hours.
During school holidays LT has a 1:1 home learning program.
LT learnt to read and write at home as result of the unrelenting efforts of his assistant. He started to learn maths from the age of 8, prior to that he could not master the basic concepts, or understand the relevant vocabulary.
From the age of 9, LT has been able to keep up with his new peer group at school, two years his junior.
At the age of 14, in a class with 12 year old neurotypical children, LT takes the same assessments as the rest of the class and his grades currently place him in the top half of the class. He is now particularly good at things like arithmetic, algebra, coordinates, spelling and has neat handwriting (very unusual in autism). He is still clearly autistic and his speech is limited to what he wants to say; there is no small talk.
LT started to learn the piano aged 8. He progressed from an extremely basic level and a desire to hit his teacher to his current level 4 of the popular Faber Music piano course (there are just 5 levels). When he plays in public people are very surprised, he does not play like someone with any cognitive impairment. His peers as school have asked “how can he play like that?” 

Motor Skills
Like many people with classic autism LT had problems with both fine and gross motor skills as an infant. After a great deal of 1:1 therapy, motor skills are now normal.
LT started to learn to ski at the age of 5 with a special needs instructor. Progress was initially slow, but 9 years and one broken collar bone later, LT can confidently ski on red slopes and deal with all the various types of lifts you encounter in the Alps.
Stamina improved considerably after starting to take Agmatine, which is evident at school where they are timed to run 2.5 km (1.5 miles) and when swimming.

Behavioral Treatment (age 3- 8)
From diagnosis aged three, until nine years old, therapy was exclusively based on behavioral interventions. Extensive use of ABA (Applied Behavioral Analysis) and VB (Verbal Behavior) with 40 hours a week with a 1:1 Assistant.
At the aged of 9, LT had mastered almost all the skills in the very extensive ABBLS (Assessment of Basic Language and Learning Skills) assessment. The language skills and other basic learner skills that are tracked by this tool are those that are acquired by most typically developing children by the time they reach four to five years of age. LT’s elder brother had acquired these while he was three years old.
LT’s skill acquisition to the age of eight was seen by the ABA consultants as nothing unusual in someone with classic autism. There was slow but continuous progress. 
All learning was taking place at home with school attended mainly for socialization.

Pharmacological Treatment (age 9 onwards)
In late 2012 a small clinical trial was published by Ben Ari and his clinical associate Lemmonier; it showed the benefit of the NKCC1/2 blocker bumetanide in autism. This paper was studied by LT’s father and contact has been maintained for several years with Dr Ben Ari, who originated and patented this therapy.
Bumetanide (1mg per day) was commenced just before Christmas December 2012, unknown to the school, or LT’s assistants.
On returning to school in January 2013 the Head Teacher summoned LT’s father and asked what had happened to LT. He was “so joyous” and “like a different child”.
At the suggestion of his original ABA consultant, LT’s father had been asking LT every school day for 5 years “what did you have for lunch at school today?”. The usual answer would be no answer, the wrong answer, but sometimes a brief correct answer. From now on LT would say precisely what he had eaten “peas, potatoes and chicken – cake for dessert”. The assistant was there to confirm what had really been eaten for lunch. 
LT’s 1:1 assistant at that time described the effect of bumetanide as making him “more present”. Since his assessment at the age of 3, it was always noted that LT had a very short attention span and would not be able to focus on the class teacher for more than a couple of minutes. LT was never hyperactive, quite the opposite. He was physically present but not mentally.
Later on it would be realized that the most potent effect of long term bumetanide use in strictly defined autism (SDA) is enhanced cognition, which leads to accelerated acquisition of new skills.  IQ has long been seen as the best predictor of more favorable outcomes in autism.  
Bumetanide use has continued for five years, with occasional pauses to confirm it still works.  Different doses were tested and currently the dose is 2mg once a day.
When stopping bumetanide for a week and returning to his web-based maths learning program, LT was unable to complete previously mastered tasks, no matter how many times he tried. Having recommenced bumetanide, the same maths problems were attempted a week later and could be solved. 
Blood potassium levels were checked regularly at the beginning, but were always high normal (5.0 mmol/L).  Bumetanide is taken with 250mg of K+ per 1mg of bumetanide. Diet is rich in potassium, with bananas and other fruit.
Dehydration, another potential problem, is entirely self-regulated with LT drinking more water. Total consumption is 2.5 to 3 liters per day.
Diuresis occurs mainly within one hour of taking bumetanide and has never caused a problem at home or school. LT takes his bumetanide at least an hour before leaving home for school.
Bumetanide’s suggested mode of action is lowering intracellular chloride via blocking NKCC1 cotransporters in the brain.  Bumetanide crosses the blood brain barrier very poorly and many researchers are dubious it can have any effect. Bumetanide is a partial solution.
A new drug is being developed by Dr Ben Ari that will cross the blood brain barrier more effectively than bumetanide and have less effect on NKCC2, so producing less diuresis.
An alternative strategy discussed in the literature is to improve the pharmacokinetics of bumetanide, by slowing its excretion via OAT3 (organic anion transporter 3) and thus increasing plasma concentration. There are many OAT3 inhibitors, the best known and most potent is probenecid, used to treat gout by increasing the excretion of uric acid. Some foods are OAT3 inhibitors. One readily available substance is chlorogenic acid (more precisely 1,3- and 1,5-dicaffeoylquinic acid) which is sold as a coffee-based weight loss supplement. Interestingly, coffee, but not caffeine, has been shown to reduce the risk of gout.
Little is known about exactly how bumetanide is transported/excreted across the blood brain barrier.
Bumetanide’s autism benefit appears to be from lowering intracellular chloride and hence making GABAA become more inhibitory. Excitatory-Inhibitory (E/I) imbalances are widely believed to be at the core of autism.  An E/I imbalance during so-called Critical Periods, will result in permanent changes to the developing brain, nonetheless it appears that correcting an E/I imbalance in later years can still be highly beneficial, though not curative. 
Another experimental therapy also makes GABAA become more inhibitory. This uses very low doses of clonazepam to modify the behavior of GABAA receptors that contain the α3 sub unit.  In LT the effective dose of clonazepam is just 0.03mg, which might be considered sub-clinical, but as predicted by Professor Catterall, it does have a beneficial effect (a bumetanide-like effect). It has no side effects and there is no tolerance develops at this tiny dose, after four years of use.
At the time low dose clonazepam was introduced, LT would go swimming at 5pm most days. He was not really interested to do much independently in the water, he was very passive. This passive behavior was notably changed once the effective clonazepam dose had been found. He became more like a typical child playing in a swimming pool. Instead of sitting on the steps he wanted/demanded interaction/play with the attending adult.  The effect was not as profound as that seen in the first months of bumetanide, but noticeable nonetheless.
After 4 years of bumetanide the effect was still there, but there was a desire to accelerate skill acquisition to keep up with neurotypical school peers.
A new strategy was adopted to further reduce intracellular chloride, this time using a method first documented in the 1850s, when potassium bromide (KBr) was used to treat epilepsy. Reading old case studies from Great Ormond Street Hospital in London it appeared to LT's father that some children with epilepsy, MR/ID and undiagnosed autism improved behaviorally and developed age-appropriate play when treated with KBr. Lack of age-appropriate play is a hallmark of autism.  Modern research shows that bromide ions compete with chloride ions to enter cells and the result is a lower intracellular concentration of Cl-. The limiting factor in the use of KBr is that it increases mucous secretions and so causes acne (and can make asthma worse), in a dose dependent fashion. At a low dose of 400mg per day there is a cognitive gain without significant spots. KBr is still used at high doses to treat pediatric epilepsy in Germany and Austria. Some leading US neurologists regret they cannot prescribe it; technically they could ask the FDA for permission on a patient by patient basis.

Another strategy to reduce intracellular chloride is to target chloride ions that enter neurons via the AE3 exchanger, this is possible using Acetazolamide (Diamox). This therapy does seem to work for some people, but was not tolerated by LT, it caused reflux.
KBr has a very long half-life and so it takes 4-5 weeks to reach the maximum effect. 
Bumetanide took about two weeks to lower chloride and show behavioral and cognitive improvements.
Low dose clonazepam takes three days, as was predicted by its half-life.
The cognitive loss in severe autism has parallels with that in Down Syndrome (DS). Bumetanide has been patented as a therapy for DS by Ben Ari, based on the results from mouse studies.
In mouse models of Down Syndrome both a negative allosteric modulator and a selective inverse agonist of α5 sub-unit of the GABAA receptor improve cognition. 
Mouse research has shown that poor learners have greater GABRA5 expression than good learners and that in mice GABRA5 expression can be normalized by eating cinnamon, or its metabolite sodium benzoate (NaB); this makes a poor learner become a good learner, at least in mice.
So it may be that increasing the effect of α3 sub-unit of the GABAA and reducing the effect of the α5 sub-unit of the GABAA can both improve cognition. For the moment the latter remains unproven. NaB is an approved food additive, E211. Ceylon cinnamon, which is safe for long term consumption, is metabolized to NaB. People who are histamine intolerant have to avoid DAO inhibitors such as cinnamon and NaB. 

Summertime raging and loss of cognitive gains
From the aged of 8 it became apparent that summer provoked behavioral deterioration. At this point there was no obvious allergy, but behavior improved when moving to the mountains in summer. At first, OTC mast cell stabilizers were investigated; some common H1 antihistamines are partial mast cell stabilizers. Rupatadine, azelastine, ketotifen, loratadine and cetirizine were all tried, as was the flavonoid quercetin.
Some of the above did indeed help reduce the summertime self injury, but not to a satisfactory level.
A final solution was found in a small dose of the Cav1.2 blocker, verapamil. 
When mast cells degranulate, one step requires activation of an L-type calcium channel. This is why most mast cell stabilizers are actually calcium channel blockers.
It should be noted that mutation in the CACNA1C gene, which encodes the Cav1.2 ion channel, leads to a severe kind of autism called Timothy Syndrome. Because Cav1.2 is widely expressed in the heart those affected have a very poor prognosis.
In addition, verapamil blocks the potassium ion channel Kv1.3.  Potassium channels, Kv1.3 and KCa3.1, have been suggested to control T-cell activation, proliferation, and cytokine production. Kv 1.3 is widely regarded as a therapeutic target for immunomodulation in autoimmune diseases.  Research has shown that peptides from parasitic worms that suppress the body's immune response do so by blocking Kv1.3. A drug therapy based on these peptides is being developed.
Verapamil also upregulates autophagy, which is impaired in many neurological disorders, such as Huntington’s. Lack of autophagy has been linked to the synaptic pruning deficits found in autism.
Verapamil has a short half-life of about 3 hours. Only a small dose is required to prevent the onset of SIB and the preceding agitation (described by LT as “spray the fire in my head”).
From the age of 10, LT’s summertime raging has been treated with 40-80 mg of Verapamil split into 2-3 doses from May until late November.
On the occasions that he has missed his 1pm dose in the peak allergy period, he has repeatedly developed aggression and self-injury by 4 or 5pm.
When he has taken verapamil there has never been any aggression and or self-injury.
Once self-injury was removed as a concern, learning progressed during the long summer school holidays. It became clear that during summer cognition was reduced as if bumetanide was no longer working.
It has been shown that the expression KCC2, the cotransporter that allows Cl- to leave neurons is affected by inflammatory cytokines like IL-6. It therefore appears plausible that the histamine and IL-6 released directly and indirectly by mast cell degranulation was causing an increase in neuronal Cl- and thus undoing the good work being done by bumetanide. Inflammation also increases α5 GABAA receptor activity and can thus reduce cognitive function.
At this point, the bumetanide dose was raised from 1mg once a day to 2mg in the morning and on occasion 1mg in the late afternoon.
The combination of an increased dose of bumetanide and the use of verapamil, cetirizine and azelastine has produced a very favorable result (no SIB and minimal summertime cognitive decline). Perhaps of note is that cetirizine is an eosinophil stabilizer, which may also be helpful and not just for asthma.
OTC therapies that have a helpful effect in summer are L-histidine, curcumin and L. reuteri DSM 17938 (sold as Biogaia Protectis). The amino acid histidine is a precursor to histamine and it seems that the body’s feedback loops can be tricked into not degranulating mast cells by slightly increasing the level of circulating histidine. The immunomodulatory effects of L. reuteri DSM 17938 have been well studied; the effect however does not continue after prolonged use. Curcumin is a very widely studied natural substance that performs much better in vitro than in vivo, due to very poor bioavailability. Modified versions of curcumin have been developed and there is a marginal benefit. Histidine is extremely cheap and easy to administer. Modified curcumin and L. reuteri are quite expensive.
It is reported by others that at a higher dose verapamil is as effective as an H1 antihistamine in treating allergy. 

IPR3
It appears that aberrant calcium channel signaling is a key feature of much autism. Gargus has suggested that IP3R is a nexus for different dysfunctions that lead to autism. IP3R controls the release of calcium stored within cells (the endoplasmic reticulum).
Excessive calcium within cells is known to be damaging. L-type calcium channels that remain open will raise intracellular calcium and the same is true with IP3R. Caffeine can be used to inhibit calcium release via IP3R.
Gargus has not proposed an IP3R therapy.  


RORα

RORα is another proposed nexus where different dysfunctions  that lead to autism may converge. One potential RORα agonist is estradiol.  We know that in much autism there is elevated testosterone and reduced estradiol; we also know that estrogen receptor beta is under-expressed. Estradiol is known to be highly neuroprotective and may help protect females from developing autism. Females lacking in estradiol, for example in Turner Sydrome, may exhibit features of autism. A logical therapy would be to either use estrogens, or reduce testosterone (effectively the same thing). Ideally you would do this just in the brain; a brain selective pro-drug of estradiol, called DHED, actually exists. Less ideal therapies range from estradiol itself, to phytoestrogens or a high soy diet, to drugs reducing testosterone, like spironolactone; these will have effects beyond the brain.

Wintertime raging
Having solved summertime raging, wintertime raging appeared. As expected, verapamil had no effect.
Ultimately the likely trigger was traced back to the very slow loss of milk teeth and eruption of permanent teeth. Both reabsorption of roots and the eruption new teeth is signaled using pro-inflammatory cytokines.
Moderate use of Ibuprofen, as and when behavior began to deteriorate, resolved the problem. Ibuprofen has no effect on summertime raging.

PANS-like episode aged 13
PANS (Pediatric Acute-onset Neuropsychiatric Syndrome) and PANDAS (Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections) are infection-induced autoimmune conditions that disrupt a patient’s normal neurologic functioning, resulting in a sudden onset of Obsessive Compulsive Disorder (OCD) and/or tics and cognitive loss.
The import part is acute-onset; behavior changes overnight.
LT exhibits the classic traits of autism including stereotypy/stimming but never tics, which are a feature of Tourette’s-type autism.
Just before Christmas LT was recovering well from what presented as mild viral infection that had not warranted any medical intervention. He suddenly developed very loud verbal tics.
It is well known in PANS that delayed treatment severely affects prognosis. The sooner the patient is treated, the more complete recovery will be. Diagnosis is based on a very specific set of laboratory tests, only available in the US.
LT was treated from the third day of the tics as if he had PANS flare-up. He was treated with 40mg of prednisone for 5 days, requiring no taper.
Over a two week period the tics faded away. There have been no more tics.

Use of antioxidants
A recurring feature in autism research is oxidative stress. Two clinical trials have shown the benefit of the antioxidant NAC (N-acetylcysteine) in autism.
In LT the effect of NAC is the immediate disappearance of stereotypy and a type of anxiety. Without NAC, LT always wants to know what is happening next, to the point of obsession.
Oxidative stress has been shown to vary throughout the day and LT’s therapy is tailored to match it. Oxidative stress causes a cascade of further disruptions and causes many of the side effects of type-1 diabetes, for example.
LT takes 2,400 mg of NAC per day (a dose slightly lower than in the clinical trials). He has 600mg immediate release NAC at 7am, 600mg sustained release at 7am and then 600 mg sustained release at 1pm and 5pm. 
There have been no side effects after more than 4 years. 

Anti-inflammatory
Numerous studies (e.g. Ashwood) show elevated pro-inflammatory cytokines and reduced  anti-inflammatory cytokines as a feature of autism; but specific subgroups exist. Activated microglia is another feature of autism, which also suggests chronic inflammation.
Numerous anti-inflammatory strategies have been researched.
Atorvastatin has potent anti-inflammatory effects that are very well studied. It also affects the autism/cancer proteins RAS, PTEN and BCL2.
RASopathies are associated with MR/ID and indeed autism. Mutations in PTEN generally cause loss of function in PTEN and are associated with macrocephaly, enlarged corpus callosum, MR/ID and autism. Loss of function of PTEN is also found in some cancers, for example prostate cancer.
Because autism is polygenic and hundreds of genes are over/under expressed, it is not necessary to have a mutation to have misexpression. The mutation is just the extreme case (be it Cav1.2 or PTEN).
The effect of Atorvastatin is visible from the first dose and fades away the next day if therapy is stopped. The effect is very specific, it releases cognitive inhibition; it is as if the person with autism has the desire and capability to do something, but some barrier prevents him from doing it.
In broader severe autism, this is very important, Why does a child with autism who can verbalize never speak?
At the age of 9, LT was having piano lessons at home twice a week. He would practice the piano only if his assistant or father sat beside him. He never played independently.
After taking 10mg Atorvastatin for the first time, the next day LT went himself to his piano and started playing, without any prompting of any kind. He then began to practice on a daily basis.
As a child aged 3, LT had the habit of coming to the entry of the room with the television and watching from around the corner of the wall. He wanted to watch but could not enter the room. At the time it was thought he somehow just liked the visual sensation of peering around corners.
When he later moved to a multi-level house, LT would not come downstairs by himself; he would wait at the top of the stairs for someone to lead him down, every morning.  With atorvastatin not only did this behavior disappear, but it reappeared the day after Atorvastatin was withdrawn.
During one test withdrawal of the treatment, he got “stuck” in the kitchen and could not leave the room.

Sulforaphane Nrf2 and HDAC
In 2014, and again in 2017, Talalay/Zimmerman published research that sulforaphane from broccoli showed a benefit in autism. Sulforaphane is an HDAC inhibitor and thus has potential epigenetic properties, like some cancer drugs. Sulforaphane may also activate the Nrf2 redox “switch” and so be protective in conditions associated with oxidative stress.
LT’s father did contact the researchers and shortly after the first research was published LT started to take a broccoli sprout supplement. It did produce a very obvious effect and within 30 minutes; LT was laughing so much, be went to look at himself in the bathroom mirror. The more general effect was an unmissable increase in speech.
After three years of use the positive effect of sulforaphane/broccoli is no longer visible, even trying alternative brands.
In the 2017 clinical trial the authors found one responder retained the benefit of sulforaphane after the trial ended. They suggest an epigenetic switch may have been activated.  

Mitochondria and Microvasculature
A distinct type of autism has been characterized by Kelley at Johns Hopkins, Autism Secondary to Mitochondrial Disease (AMD). Kelley suggests that almost all regressive autism is caused by mitochondrial dysfunction and usually deficiency of the rate-limiting complex 1.
By stabilizing the mitochondria with antioxidants and then trying to stimulate more complex 1, a gradual improvement can occur.
Mitochondrial disease effectively starves the brain and body of energy (ATP), so lack of exercise endurance is exhibited in people with a genuine mitochondrial dysfunction.
One feature of autism is that growth factors (BNDF, IGF-1, NGF, VEGF etc) are disturbed, but the disturbance varies greatly by the type of autism.  Vascular endothelial growth factor (VEGF) in particular and its receptors are known to be disturbed and this has implications for microvasculature. Studies suggest that unstable, rather than reduced blood flow occurs in autistic brains.
In sports medicine, exercise endurance is a key target and it can be raised by improving the energy production from mitochondria and by improving the circulation of blood throughout the body by targeting eNOS (Endothelial Nitric Oxide Synthase) and NO (Nitric Oxide).
In Mild Cognitive Impairment (MCI) studies have shown the benefit of improved cerebral blood flow using cocoa flavanols to indirectly affect NO and hence improve memory.
Studies show that eNOS and NO can be safely increased by Agmatine and NO can be increased  using L-citrulline, which then produced more L-arginine. These supplements are widely used by sportsmen and women.
A small dose of Agmatine (1 g) has a near immediate substantial effect on LT, making him far more energetic.  It moved him from being rather passive physically, to being active. This has been very evident from his performance at school during physical activities, where it has been widely noted. At home LT started trampolining before breakfast and late in the evening.

Sensory Overload and Sensory Gating
An apparent over-sensitivity to sensory stimuli is a common observation in autism and is often the precursor to behavioral problems. In some younger children these can be trivial, but in more severe autism it can produce profound behavioral problems that never fade away.
Hypokalemic sensory overload and hypokalemic periodic paralysis are described in the literature. LT had sound sensitivity as a young child, in particular an inability to cope with the sound of crying. Tests were carried out to establish whether LT’s tolerance to the sound of crying improved after oral potassium. He consistently tolerated a high volume of a recording of this sound, when played 20 minutes after 250mg of potassium. Following ABA, he was purposefully exposed to this sound and taught to understand why people cry and modify his response, to the extent that his response changed to laughter, which again has to be modified towards empathy. 
Aged 10, LT developed a phobia to traveling in elevators/lifts. This was because the elevator he regularly used to visit his Grandparents was the old-fashioned type, with an internal sliding gate that you close by hand, which is extremely noisy.  He refused to use the elevator from that point on.  People with autism very easily form habits, or are allowed to form them, following the path of least resistance.  Elevators are a part of modern life and hard to avoid.
After a few weeks of this behavior, LT was given 500mg of potassium and half an hour later willingly entered the elevator and coped with the ride. The behavior has never recurred.
Sensory gating is another common issue in autism and schizophrenia, the individual is not able to filter out repetitive background sounds, like a clock ticking or the sound of a noisy eater. Sensory gating can be measured by looking at the P50 response on an EEG. α7 nicotinic acetylcholine receptor (α7 nAChR) agonists, like nicotine, can correct impaired P50 gating. A low dose of a PDE4 inhibitor is another suggested therapy
LT does exhibit was presents as impaired P50 gating. It is really only evident when his pharmacological therapy is halted for a few days. Then he finds all kinds of unavoidable noises very annoying, even the sound of a person sitting next to him eating. 

Typical Psychiatric Drugs
LT has never been treated with any of the usual antipsychotics, stimulants, anti-depressants, or anti-anxiety drugs sometimes prescribed in autism. His use of clonazepam is at a dose far below its standard clinical use.

Current status
In September 2017 LT moved to secondary/high school where some of the teachers recall how he used to be 10 years previously. Initially there was some trepidation and the view by some that a boy with classic autism should not be there. The school does have a boy with Asperger’s. However, LT surprised his new teachers, achieving grades placing him in the top half of his class. He is now extremely attentive in class, no attention deficit anymore, and has clearly not reached his intellectual limit. He has likely already far surpassed his intellectual limit, had he remained untreated.
As the end of the first year of high school approaches, LT continues to keep up academically with his peers. His agmatine-boosted physical performance has been maintained and he competes very well in long distance running and swimming.
LT is still intellectually far away from the trajectory followed by his older brother, but LT is keeping up academically with many of his classmates who are neurotypical, with average IQs.
A significant number of people diagnosed very young with autism do indeed make dramatic progress by the age of 6.  Zappella proposed his Dysmaturational Syndrome that he says applies to about 6% of early childhood autism, but they all have Tourette’s type autism (with tics).   There is an additional group without tics that also achieve what Fein calls Optimal Outcome, essentially they lose their autism diagnosis. In total it is 10-15% of cases that seem to “get better” all by themselves, regardless of intervention. As more diagnosis takes place even before 2 years of age and autism threshold grows ever wider, Optimal Outcome may become even more common.  
The definition of autism has been greatly watered down in recent years (DSM3 to DSM5). LT started with DSM3-type autism and by the age of 8 he still had it. DSM5 autism includes very much milder variants, some of which are trivial.
Each therapy used by LT has been found to be reversible based on careful withdrawal trials.



People with strictly defined autism (SDA) start to acquire skills with a delay compared to NT peers and thereafter acquire skills at a slower rate and hence fall ever further behind, making inclusion at school a delusion. The aim is to have similar skills to NT peers to make inclusion effective.
People with SDA often leave high school with an educational level of a 7 to 10 year old.

From the age of 12, LT ceased having any autism-specific learning curriculum; he just follows the curriculum of his mainstream school.  

Anecdotal Evidence
LT’s piano teacher exclusively teaches people with disabilities (mainly severe autism and a few with Asperger’s) and so has great experience of the disorder. She says while she has taught people who learnt to play as well as LT does today, this has never happened before with a child who started in his kind of condition at 8/9 years old.
The American ABA consultant (with Ph.D. and 20 years of experience) knowing LT from the age of 8, before he started bumetanide, told the family that of all her clients, LT is the one she sees the least but has improved the most and how strange that is. 


Current Therapy

The current therapy, called the Autism PolyPill, may be found in the link below.  

https://epiphanyasd.blogspot.com/p/polypill-for-autism.html

Autism is a highly heterogeneous condition, but there appear to be broad sub-types. At least some people with an autism diagnosis respond to each individual therapy in the PolyPill. Some people respond to almost the entire combination of therapies; other people respond to none.


Future Therapy

Some other interesting therapies remain to be investigated and it is clear that more improvement is possible because short term therapy with the flavones nobiletin and tangeretin produces a marked change in cognition and behaviour. The effect only lasts two or three days.  Tangeretin is a PPAR gamma agonist, among other properties. It reduces cholesterol when used long term, but its autism benefit is transient.  

The ketone Beta-Hydroxy Butyrate (BHB) also looks interesting; it has epigenetic properties amongst its other effects.