UA-45667900-1
Showing posts with label ATP. Show all posts
Showing posts with label ATP. Show all posts

Friday, 29 June 2018

Oxaloacetate and Pepping up Bioenergetic Fluxes in Autism and other Neurological Diseases



BHI as a dynamic measure of the response of the body to stress
In this scheme, healthy subjects have a high BHI with a high bioenergetic reserve capacity, high ATP-linked respiration (AL) and low proton leak (PL). The population of mitochondria is maintained by regenerative biogenesis. During normal metabolism, a sub-healthy mitochondrial population, still capable of meeting the energetic demand of the cell, accumulates functional defects, which can be repaired or turned over by mitophagy. Chronic metabolic stress induces damage in the mitochondrial respiratory machinery by progressively decreasing mitochondrial function and this manifests as low ATP-linked respiration, low reserve capacity and high non-mitochondrial (e.g. ROS generation) respiration. These bioenergetically inefficient damaged mitochondria exhibit increased proton leak and require higher levels of ATP for maintaining organelle integrity, which increases the basal oxygen consumption. In addition, chronic metabolic stress also promotes mitochondrial superoxide generation leading to increased oxidative stress, which can amplify mitochondrial damage, the population of unhealthy mitochondria and basal cellular energy requirements. The persistence of unhealthy mitochondria damages the mtDNA, which impairs the integrity of the biogenesis programme, leading to a progressive deterioration in bioenergetic function, which we propose can be identified by changes in different parameters of the bioenergetics profile and decreasing BHI.

Source:  The Bioenergetic Health Index: a new concept in mitochondrial translational research


Bioenergetic is today’s new buzz word; it is again all about getting maximum power output (ATP) from your mitochondria, which we looked at from a different perspective in a recent post.


A simple lack of ATP inside the brain seems to be a feature of many kinds of neurological problem. 
Oxaloacetate (OA or OAA) is another interesting potential treatment for a wide range of neurological disorders from Alzheimer’s and ALS to Huntington’s and Parkinson’s. There are no effective treatments for any of these conditions and little has changed in decades.
OAA, at high doses, and in animal studies, does have some very interesting effects, but they are perhaps too wide ranging, because some may be helpful and others not. OAA is interesting but no panacea.
OAA is sold as a supplement in low doses. It changes so many things, I think it is not surprising that some people find it beneficial, whether it is for Bipolar, ADHD or something else.
I think at higher doses, where there is a measurable impact above and beyond the OAA you have naturally in your blood, there might be some benefit as a treatment for mitochondrial disease. That would mean most regressive autism and some Childhood Disintegrative Disorder (CDD).
So we can consider OAA as another potential therapy for bioenergetic dysfunction. We have come across many potential therapies already in this blog.
Here is a schematic summary of what OAA does.



OAA effects and inter-effect relationships. OAA, a bioenergetic intermediate, affects bioenergetic flux. This produces a number of molecular changes. CREB phosphorylation and CREB activity increase, which in turn promotes the expression of PGC1 family member genes. AMPK and p38 MAP phosphorylation increase, and these activated kinases enhance PGC1α co-activator function. PGC1-induced co-activation of the NRF1 transcription factor stimulates COX4I1 production, while PGC1-induced co-activation of the ERRα transcription factor stimulates VEGF gene expression (61). OAA-induced flux changes also stimulate the pro-growth insulin signaling pathway and reduce inflammation. The pro-growth effects of increased insulin pathway signaling and increased VEGF, in conjunction with a more favorable bioenergetic status and less inflammation, cooperatively stimulate hippocampal neurogenesis.

You may recall from earlier posts that PGC-1α is the master regulator of mitochondrial biogenesis. 
The PGC-1α protein also appears to play a role in controlling blood pressure, regulating cellular cholesterol homoeostasis, and the development of obesity.
The PGC-1 α protein interacts with the nuclear receptor PPARγ. PPARγ has been covered extensively in this blog; agonists of PPARγ do seem to be therapeutic in some autism. Many drugs that are used to treat Type 2 diabetes work because they are PPARγ agonists.
It is not a surprise that Oxaloacetate (OAA) lowers your blood sugar. 



Bioenergetics and bioenergetic-related functions are altered in Alzheimer's disease (AD) subjects. These alterations represent therapeutic targets and provide an underlying rationale for modifying brain bioenergetics in AD-affected persons. Preclinical studies in cultured cells and mice found that administering oxaloacetate (OAA), a Krebs cycle and gluconeogenesis intermediate, enhanced bioenergetic fluxes and upregulated some brain bioenergetic infrastructure-related parameters. We therefore conducted a study to provide initial data on the tolerability and pharmacokinetics of OAA in AD subjects. Six AD subjects received OAA 100 mg capsules twice a day for one month. The intervention was well-tolerated. Blood level measurements following ingestion of a 100 mg OAA capsule showed modest increases in OAA concentrations, but pharmacokinetic analyses were complicated by relatively high amounts of endogenous OAA. We conclude that OAA 100 mg capsules twice per day for one month are safe in AD subjects but do not result in a consistent and clear increase in the OAA blood level, thus necessitating future clinical studies to evaluate higher doses.

In addition to being proposed for the treatment of AD and diabetes, recent preclinical research has also identified OAA as a potential therapeutic agent for stroke, traumatic brain injury, amyotrophic lateral sclerosis, and glioma [15], [16], [17], [18]. The clinical safety data we now report should prove relevant to efforts intending to translate results from these preclinical studies to the clinical arena. Our study also informs our attempts to develop OAA as a treatment for AD. Overall, we conclude that although OAA 100 mg capsules twice per day for one month are safe in AD subjects, because a consistent and clear increase in the OAA plasma level was not observed future clinical studies need to evaluate higher doses.

Experimental: Oxaloacetate (OAA) active capsule containing 100 mg OAA and 100 mg ascorbate, taken daily  

Experimental: Part 2 - Oxaloacetate (OAA)2 gram/day 
Participants take 2 grams of OAA per day for period of 4 weeks

Participants take 2 capsules Jubilance 100 mg Oxaloacetate/150 mg Ascorbic Acid blend per day

Oxaloacetate is an energy metabolite found in every cell of the human body. It holds a key place in the Krebs Cycle within the mitochondria, providing energy to the cells. It is also a critical early metabolite in gluconeogenesis, which provides glucose for the heart and brain during times of low glucose. It is critical to human metabolism, proper cellular function and it is central to energy production and use in the body.
Oxaloacetate may affect Emotional PMS through multiple mechanisms. During PMS, there is a large increase in glucose utilization in the cerebellum of the brain in women who are affected with emotional mood swings. Oxaloacetate supplementation has been shown to support proper glucose levels in the body. Having an excess of oxaloacetate allows gluconeogenesis take place upon demand, thereby fueling the brain, and perhaps meeting cerebellum glucose need.
In addition to oxaloacetate's ability to support proper glucose regulation, oxaloacetate affects two chemicals in the brain, GABA and glutamate. Altering the GABA/Glutamate ratio can affect mood. Oxaloacetate supplementation can reduce glutamate levels in the brain via a process called "Glutamate Scavenging". In addition, oxaloacetate supplementation was shown to increase GABA levels in animal models. By both lowering glutamate and increasing GABA, the GABA/Glutamate ratio is affected, which may also help women with Emotional PMS.
This study will investigate oxaloacetate's effect on Emotional PMS using patient completed surveys to measure depression, anxiety, perceived stress, and aggression, and statistically compare these results against placebo (rice flour) and baseline measurements.

An interesting old paper from 1968 was recently highlighted to me by a friend, it  shows that sodium oxaloacetate is particularly effective in treating type-1 diabetes.  In type-2 diabetes the effect range from none/minor in most  to a profound effect in a minority.
The meaning of “treating” was reducing blood sugar levels.
This study was the result of identifying the active substance in the plant euonymus alatus sieb, which has known blood sugar lowering effects.



Introduced from northeast Asia in the 1860s. Widely planted as an ornamental and for highway beautification due to its reliable and very showy fall foliage coloration. Numerous cultivars are available.
Other states where invasive: CT, DE, IN, KY, MA, MD, MO, NH, NJ, OH, PA, RI, VA, WI, WV. Federal or state listed as noxious weed, prohibited, invasive or banned: CT, MA.

Here is the interesting Japanese paper from 1968: 

There are more recent studies on the Euonymus alatus plant:

Euonymus alatus (E. alatus) is a medicinal plant used in some Asian countries for treating various conditions including cancer, hyperglycemia, and diabetic complications. This review outlines the phytochemistry and bioactivities of E. alatus related to antidiabetic actions. More than 100 chemical constituents have been isolated and identified from E. alatus, including flavonoids, terpenoids, steroids, lignans, cardenolides, phenolic acids, and alkaloids. Studies in vitro and in vivo have demonstrated the hypoglycemic activity of E. alatus extracts and its certain constituents. The hypoglycemic activity of E. alatus may be related to regulation of insulin signaling and insulin sensitivity, involving PPARγ and aldose reductase pathways. Further studies on E. alatus and its bioactive compounds may help to develop new agents for treating diabetes and diabetic complications.

A total of 26 flavonoids have been isolated and identified from E. alatus. The main structure types include flavonoid, flavanone, and flavonol. The aglycones of flavonoid glycosides isolated from E. alatus include quercetin, kaempferol, naringenin, aromadendrene, and dihydroquercetin. The flavonoids are mainly distributed in the leaves and wings of E. alatus
There is no mention of oxaloacetic acid.
The active components in protecting experimental diabetic nephropathy as mentioned above have also been suggested to be concentrated in ethyl acetate and n-butanol fractions [36, 40], though the nature of these compounds is still not identified. 
Euonymus alatus (E. alatus) has been used as a folk medicine for diabetes in China for more than one thousand years. In order to identify major active components, effects of different fractions of E. alatus on the plasma glucose levels were investigated in normal mice and alloxan-induced diabetic mice. Our results show that ethyl acetate fraction (EtOAc Fr.) displayed significant effects on reducing plasma glucose. In oral glucose tolerance, EtOAc Fr. at 17.2 mg/kg could significantly decrease the blood glucose of both normal mice and diabetic mice. After 4 weeks administration of the EtOAc Fr, when compared with the diabetic control, there were significant difference in biochemical parameters, such as glycosylated serum protein, superoxide dismutase and malondial dehyde, triglyceride, and total cholesterol, between alloxan-induced diabetic mice and the control group. Additional histopathological studies of pancreatic islets also showed EtOAc Fr. has beneficial effects on diabetic mice. Chemical analysis with three-dimensional HPLC demonstrated that the major components from EtOAc Fr were flavonoids and phenolic acids, which had anti-oxidative effects on scavenging DPPH-radical in vitro. All these experimental results suggest that EtOAc Fr. is an active fraction of E. alatus and can prevent the progress of diabetes. The mechanism of E. alatus for glucose control may be by stimulating insulin release, improving glucose uptake and improving oxidative-stress.

Oxaloacetic acid
You already have Oxaloacetic acid in your body, you make it.
Oxaloacetic acid (also known as oxalacetic acid) is a metabolic intermediate in many processes that occur in animals. It takes part in the gluconeogenesis, urea cycle, glyoxylate cycle, amino acid synthesis, fatty acid synthesis and citric acid cycle. Oxaloacetate is also a potent inhibitor of Complex II.

Conclusion
This post was prompted by our reader LatteGirl, who was asking about the supplement BenaGene and ketones. BenaGene contains 100mg of OAA and the company behind it is the sponsor of some the current OAA clinical trials.
The BenaGene supplement is sold by some companies that sell ketone products, but I do not really see big connection between OAA and ketones.   
If you can materially increase the plasma level of OAA, you really would expect numerous changes to occur.
Depending on what might be wrong with you, OAA might provide a net benefit, but it all looks very hit and miss. 
Treatment of all neurological disorders from ALS, Alzheimer’s to depression currently is remarkably hit and miss. Most serious disorders have only very partially effective treatments, but they do get FDA approval nonetheless.
The OAA research suggests its effect is from “altered bioenergetic fluxes”. You might be wondering what this actually means, since it sounds like pseudoscientific mumbo jumbo. What this really means is that for one reason or another there is a shortfall in energy (ATP) to power your cells.

“Perturbed bioenergetic function, and especially mitochondrial dysfunction, is observed in brains and peripheral tissues of subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI) (1,2), a clinical syndrome that frequently represents a transition between normal cognition and AD dementia (3). Neurons are vulnerable to mitochondrial dysfunction due to their high energy demands and dependence on respiration to generate ATP (4). Mitochondrial dysfunction may, therefore, drive or mediate various AD pathologies.”

Impaired energy (ATP) production can be caused by a deficiency in one of the mitochondrial enzyme complexes (often complex 1), but it could be caused by too few mitochondria (each cell needs many) or it could be caused by a lack of fuel (glucose or ketones), or oxygen.
Glucose crosses the blood brain barrier via a transporter called GLUT1.
GLUT1 deficiency leads to epilepsy, cognitive impairment and a small head (microcephaly). It can be treated by adopting the ketogenic diet, where ketones replace glucose as the fuel for your brain and body.
Oxygen freely crosses the blood brain barrier, but sometimes there is not enough of it. To increase the amount of oxygen that is carried in the blood, mountaineers and the military sometimes use the drug Diamox, which changes the pH of your blood, among other effects.
The brain's blood supply is via microvasculature/microvessels. This does seem to be impaired in autism, according to the research, resulting in unstable blood flow to the brain. 
Thyroid hormones are generally seen as regulating your basal/resting metabolic rate, so rather like your idle on your car, when you do not press the accelerator/gas pedal.  If the idle rate is too low your car will stall in traffic.
Thyroid hormone has many other effects and these are very important in the brain, particularly during development. A lack of the T3 hormone will lead to a physically different brain, whereas in adulthood it just causes impaired function which is reversible.
Thyroid hormones T3 and T4 can cross the blood brain barrier. The prohormone T4 is converted into the active hormone T3 within the brain. Some research suggests that T4 may have a direct role in the brain, rather than simply being a source of T3.

Thyroid receptors in the brain
TRα1 encompasses 70–80% of all TR expression in the adult vertebrate brain and TRα1 is present in nearly all neurons
It appears that windows in brain development may exist where T4 itself may act on TRα1.
Thyroid Hormone (TH) endocrinology in the CNS is tightly regulated at multiple tiers. Negative feedback loops in the hypothalamus and the pituitary control T3 and T4 output by the thyroid gland itself. Further, multiple phenomenon functions together to modulate the transport of circulating TH through the BBB, and multiple transporters act together to directly alter TH availability in the CNS itself. Additionally, conversion of intracellular T4 into T3 by deiodinase 2, inactivation of both T3 and T4 by deiodinase 3, and, the ability of different TR isoforms and different coregulators to respond directly to T4 versus T3 further regulate the CNS response to TH. 


The thyroid hormone receptor subtypes TRα and TRβ are expressed throughout the brain from early development, and mediate overlapping actions on gene expression. However there are also TR-subtype specific actions. Dio3 for example is induced by T3 specifically through TRα1. In vivo T3 regulates gene expression during development from fetal stages, and in adult animals. A large number of genes are under direct and indirect regulation by thyroid hormone. In neural cells T3 may control around 5% of all expressed genes, and as much as one third of them may be regulated directly at the transcriptional level. Thyroid hormone deficiency during fetal and postnatal development may cause retarded brain maturation, intellectual deficits and in some cases neurological impairment. Thyroid hormone deficiency to the brain during development is caused by iodine deficiency, congenital hypothyroidism, and maternal hypothyroidism and hypothyroxinemia. The syndromes of Resistance to Thyroid Hormones due to receptor mutations, especially TRα, cause variable affectation of brain function. Mutations in the monocarboxylate transporter 8 cause a severe retardation of development and neurological impairment, likely due to deficient T4 and T3 transport to the brain.   

Thyroid hormones are essential for brain maturation, and for brain function throughout life. In adults, thyroid diseases can lead to various clinical manifestations (1,2). For example, hypothyroidism causes lethargy, hyporeflexia and poor motor coordination. Subclinical hypothyroidism is often associated with memory impairment. Hypothyroidism is also associated to bipolar affective disorders, depression, or loss of cognitive functions, especially in the elderly (3). Hyperthyroidism causes anxiety, irritability, and hyperreflexia. Both, hypothyroidism or hyperthyroidism can lead to mood disorders, dementia, confusion, and personality changes. Most of these disorders are usually reversible with proper treatment, indicating that thyroid hormone alterations of adult onset do not leave permanent structural defects.
The actions of thyroid hormone during development are different, in the sense that they are required to perform certain actions during specific time windows. Thyroid hormone deficiency, even of short duration may lead to irreversible brain damage, the consequences of which depend not only on the severity, but also on the specific timing of onset and duration of the deficiency (4-8).
Hypothyroidism causes delayed and poor deposition of myelin

Pep up your Bioenergetic Fluxes
Within this blog we have encountered a wide range of methods that might help put correct a deficiency in power available to the brain.
·      Improve brain microvasculature function (Agmatine)

·      Ensure central basal metabolic rate is high enough (T3 hormone)

·      Increase D2 (lower oxidative stress, kaempferol) if centrally hypothyroid

·      Increase number of mitochondria (activate PGC1alpha)

·      Ensure adequate mitochondrial enzyme complexes for OXPHOS

·      Ensure adequate glucose transport via GLUT1

While I still feel Bioenergetic Fluxes sounds like something very quack-like, it is the valid terminology and it does look important to many neurological conditions.
In Monty, aged 14 with ASD, Agmatine has worked wonders, in terms of being far more energetic. I assume the effect is via increasing eNOS (endothelial nitric oxide synthase) and this has improved blood supply. We saw that blood flow through microvasculature/microvessels is impaired in autism.  We also saw that in mouse model of Alzheimer’s, Agmatine has a similar positive effect; this also seems to apply in at least some humans with Alzheimer’s.  

Diabetes
We can certainly add Oxaloacetate to the long list of substances we have come across in this blog that may well be therapeutic in diabetes. In the case of Oxaloacetate, it is type-1 that seems to uniformly benefit, whereas in type-2 diabetes some benefit and some do not.
It is amazing that in type-1 diabetes, only insulin is routinely prescribed, when so many things can increase insulin sensitivity and reduce the severe complications of this type of diabetes.
In the case of type-2 diabetes, you can halt its progression and, for the really committed, we saw how you can reverse it.
If a common, life-threatening, condition like diabetes is not fully treated, no wonder nobody bothers to treat an amorphous condition like autism.







Tuesday, 21 February 2017

Mitochondrial Disease and Autsim




Today’s post was originally intended to look at some further methods used to enhance cognitive function. Unlike people with typical mild cognitive impairment (MCI), some people with autism exhibit highly variable cognitive function, one way this is visible is in their hand writing quality. We previously saw that in cases of PANDAS/PANS, deterioration of hand writing is also seen during acute episodes. 
One possible cause of cognitive decline is mitochondrial dysfunction.  This is a highly complex subject in its own right and so I decided to start with a post introducing mitochondrial disease and dysfunction.
  
Mitochondria

Mitochondria are tiny organelles found in almost every cell in the body. These organelles are responsible for creating 90% of cellular energy necessary to maintain life and support growth. Mitochondrial disease occurs when mitochondria in the cells fail to produce enough energy to sustain cell life. When enough cells cease to function properly organs, motor functions, and the neurological system can become impaired.
Mitochondrial disease is often misdiagnosed due to the fact many of the symptoms are synonymous with other, more common, diseases.
In more scientific terms mitochondrial disease refers to a wide ranging group of disorders resulting in defective cellular energy production due to abnormal oxidative phosphorylation (OXPHOS), which is explained a little later.

Primary Mitochondrial Disease (PMD) vs Secondary Mitochondrial Dysfunction (SMD)
I received a comment a while back from a parent who said that tests had ruled out mitochondrial disease.  It is actually a very grey area, where it is much easier to rule it in, than out. It looks like most people with autism have some mitochondrial dysfunction, albeit perhaps minor compared to those with an identified error in a critical gene, which is today relatively easy to diagnose.

Primary Mitochondrial Disease (PMD) is inborn; people with PMD gave a genetic variance that makes them vulnerable to a loss of mitochondrial function.  This loss may not begin until later in life and may increase in severity.
PMD is extremely rare in the general population, but is thought to occur in about 5% of cases of autism.
Primary mitochondrial disease (PMD) is diagnosed clinically and ideally, but not always, confirmed by a known or indisputably pathogenic mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) mutation. The PMD genes either encode oxphos proteins directly or they affect oxphos function by impacting production of the complex machinery needed to run the oxphos process.
Secondary mitochondrial dysfunction (SMD) is much more common than PMD. SMD can be caused by genes encoding neither function nor production of the oxphos proteins and accompanies many hereditary non-mitochondrial diseases. SMD may also be due to non-genetic causes such as environmental factors.
SMD has been documented in a variety of autoimmune processes including multiple sclerosis and lupus.
Aging contributes to oxidative stress in virtually all organs and tissues in the body and increases the risk for SMD.
Altered mitochondrial fusion/fission dynamics have been found to be a recurring theme in neurodegeneration. There is evidence of mitochondrial dysfunction in neurodegenerative diseases such as Alzheimer's and Parkinson's.
A significant number of metabolic disorders include SMD as a part of their phenotypes.
Abnormal biomarkers of mitochondrial function are very common in autism.  Depending on whose data you consider, you can say that SMD is present in a substantial minority or even a majority of cases.
Ideally you would use genetic testing to try to distinguish between PMD and SMD. This is important, since their treatments and prognoses can be quite different. However, even in the absence of the ability to distinguish between PMD and SMD, treating SMD with standard treatments for PMD can be effective.

Diagnosis of PMD, SMD and specific subtypes
Some researchers/clinicians make the issue of diagnosis sound very clear cut, whereas others see it as a subjective diagnosis associated with some “ifs” and “maybes”.

Mitochondrial dysfunction can affect the whole body or be organ specific. You can take a muscle biopsy for analysis but not a brain biopsy.
There are a small number of well-known specialists who diagnose mitochondrial dysfunction. They all have their own favoured treatments and they do vary.  


Oxidative phosphorylation
Oxidative phosphorylation (or OXPHOS in short) is the metabolic pathway in which cells use enzymes to oxidize nutrients, thereby releasing energy.  This takes place inside mitochondria.

Although oxidative phosphorylation is a vital part of metabolism, it produces reactive oxygen species such as superoxide and hydrogen peroxide, which lead to propagation of free radicals, damaging cells and contributing to disease.
The five enzymes required have simplified names: complex I, complex II, complex III, complex IV, and complex V.
In the mitochondria, converting one molecule of glucose to carbon dioxide and water produces up to 36 ATPs. This does also require the presence of oxygen, in the absence of oxygen a different, much less efficient process is followed.  This is where some sportsmen seek to cheat by increasing the amount of oxygen in their blood.
Adenosine triphosphate (ATP) is a small molecule used in cells as a coenzyme. It is often referred to as the "molecular unit of currency" of intracellular energy transfer.

ATP transports chemical energy within cells for metabolism. Most cellular functions need energy in order to be carried out: synthesis of proteins, synthesis of membranes, movement of the cell, cellular division, transport of various solutes etc. ATP is the molecule that carries energy to the place where the energy is needed.

When ATP breaks into ADP (Adenosine diphosphate) and Pi (phosphate), energy is liberated.
By analyzing the level of certain byproducts of the five major steps between glucose and ATP you can determine which of the five enzyme complexes might be deficient.
Many poisons and pesticides target one of the enzyme complexes.  Inhibition of any step in this process will halt the rest of the process. One of these poisons, 2,4-Dinitrophenol, was actually used as an anti-obesity drug in the 1930s.


Complex I to V in Autism
The clinicians who like genetic testing look for concrete evidence of Primary Mitochondrial Disease (PMD). Other clinicians look for tell-tale signs in the level of chemicals like lactate and pyruvate to make diagnosis; this might suggest that a specific enzyme complex is deficient.

So if you have a diagnosis of say complex 1 deficiency, you can then go into the detail of that step in the process.  Here is gets rather complicated because 51 different genes encode components of complex 1.  Any one of them being down regulated could impair the level of complex 1.  


The researchers obtained blood samples from each child and analyzed the metabolic pathways of mitochondria in immune cells called lymphocytes. Previous studies sampled mitochondria obtained from muscle, but the mitochondrial dysfunction sometimes is not expressed in muscle. Muscle cells can generate much of their energy through anaerobic glycolysis, which does not involve mitochondria. By contrast, lymphocytes, and to a greater extent brain neurons, rely more heavily on the aerobic respiration conducted by mitochondria.

The researchers found that mitochondria from children with autism consumed far less oxygen than mitochondria from the group of control children, a sign of lowered mitochondrial activity. For example, the oxygen consumption of one critical mitochondrial enzyme complex, NADH oxidase, in autistic children was only a third of that found in control children. 

Complex I was the site of the most common deficiency, found in 60 percent of autistic subjects, and occurred five out of six times in combination with Complex V. Other children had problems in Complexes III and IV.

Levels of pyruvate, the raw material mitochondria transform into cellular energy, also were elevated in the blood plasma of autistic children. This suggests the mitochondria of children with autism are unable to process pyruvate fast enough to keep up with the demand for energy, pointing to a novel deficiency at the level of an enzyme named pyruvate dehydrogenase.

"The various dysfunctions we measured are probably even more extreme in brain cells, which rely exclusively on mitochondria for energy," 
"Children with mitochondrial diseases may present exercise intolerance, seizures and cognitive decline, among other conditions. Some will manifest disease symptoms and some will appear as sporadic cases," said Cecilia Giulivi, the study's lead author and professor in the Department of Molecular Biosciences in the School of Veterinary Medicine at UC Davis. "Many of these characteristics are shared by children with autism."

Therapy
It looks like Dr Kelley, formerly at Johns Hopkins, has the largest following by those treating autism secondary to mitochondrial disease (AMD). Treatment includes augmentation of residual complex I activity with carnitine, thiamine, nicotinamide, and pantothenate, and protection against free radical injury with several antioxidants, including vitamin C, vitamin E, alpha-lipoic acid, and coenzyme Q10.
Dr Frye is a prolific publisher, unlike Dr Kelley, and their therapies do differ.  The table below is from one of Dr Frye’s papers.



Dr Frye likes his B vitamins. On his list are B vitamins  1,2,3,5,6,7,9 and 12


Dr Kelley is a big believer in the benefit of carnitine:


“Mutation in one or more subunits of mitochondrial complex I in AMD also is suggested by the often immediate response to carnitine, which activates latent complex I by the same NDUSF7/phosphatase-kinase system that activates pyruvate dehydrogenase.  Although immediate behavioral improvement with carnitine treatment in a child with regressive autism makes complex I deficiency the most likely cause, the similar effect of carnitine to activate latent pyruvate dehydrogenase complex recommends consideration of pyruvate dehydrogenase deficiency in the child with atypical autism and substantial postprandial lactic acidemia.”

“Supplemental carnitine enhances the conversion of acyl-CoAs to free CoA + acylcarnitines, thereby raising the intramitochondrial free CoA/acyl-CoA ratio and activating the phosphatase that reverses the inhibitory phosphorylation of NDUFS7.  Pharmacological amounts of pantothenic acid increase the synthesis of free CoA in mitochondria [22], which increases further the free-CoA/acyl-CoA ratio.  Raising the free-CoA/acyl-CoA ratio recruits more functional complex I units to compensate for the partial deficiency of complex I.  Because complex I is the rate limiting step in the mitochondrial respiratory chain for most substrates, each percentage increase in complex I activity should be followed by a substantial fraction of that percentage increase in mitochondrial ATP synthesis  

A problem with carnitine is very low bioavailability. 


Carnitine is important for cell function and survival primarily because of its involvement in the multiple equilibria between acylcarnitine and acyl-CoA esters established through the enzymatic activities of the family of carnitine acyltransferases. These have different acyl chain-length specificities and intracellular compartment distributions, and act in synchrony to regulate multiple aspects of metabolism, ranging from fuel-selection and -sensing, to the modulation of the signal transduction mechanisms involved in many homeostatic systems. This review aims to rationalise the extensive range of experimental and clinical data that have been obtained through the pharmacological use of L-carnitine and its short-chain acylesters, over the past two decades, in terms of the basic biochemical mechanisms involved in the effects of carnitine on the various cellular acyl-CoA pools in health and disease.


4.3. L-Carnitine: a conditional drug?

The potential limitation of L-carnitine-based “mitochondrial” therapy may be overcome through the attainment of supraphysiological concentrations of L-carnitine in plasma and target organs, so as to elicit the desired pharmaco-metabolic response. In target organs such as liver, heart, and skeletal muscle, the intracellular L-carnitine pool is in the high micromolar to low millimolar range, whereas in the plasma it is in the low micromolar range [124]. In addition, taking into account that physiological plasma levels of L-carnitine almost saturate the high-affinity L-carnitine transporters, relatively high L-carnitine
plasma exposures are required to significantly achieve organ Lcarnitine
increases. Under these conditions, it is possible that Lcarnitine moves into the intracellular milieu via passive diffusion and/or a low-affinity carnitine transporter [125]. However, the increase of L-carnitine plasma exposure upon L-carnitine oral administration, even when using high doses (e.g. more than 2 grams per day) [124], is quite modest, since L-carnitine has a very poor absorption and bioavailability, a very high renal clearance, and active uptake into tissues by a high-affinity transporter [124,125]. Intravenous administration of L-carnitine might overcome such a problem, particularly for acute/short-term treatment of hospitalized patients. However, this route of administration may present difficulties, particularly when kidney function is intact, because the efficient tubular reabsorption process ensures that more than 95% of L-carnitine filtered by glomeruli is retained [124,126]. Moreover, since renal tubular
reabsorption occurs via an active transporter, once the transporter
is saturated the excess of exogenous L-carnitine is readily excreted.
  
A Carnitine Analog Perhaps?
I did write a post about Meldonium/Mildronate, a drug that was made famous by the Russian tennis star Maria Sharapova.  This drug was developed in Latvia.

One of its effects is thought to be increasing the size of blood vessels and therefore improving blood flow; this increases exercise endurance.
This fact was very well known in the old Soviet Union and Meldonium was widely used by their soldiers fighting in Afghanistan.  At high altitudes there is less oxygen in the air you breathe and ultimately less in your blood and this compromises the ability of infantry soldiers.
The western world’s military have long used  acetazolamide/Diamox which makes your blood more acidic and this  fools the body into thinking it has an excess of CO2, and it excretes this imaginary excess CO2 by deeper and faster breathing, which in turn increases the amount of oxygen in the blood.   
Other than sportswomen and soldiers, Meldonium is used to treat coronary artery disease, where problems may sometimes lead to ischemia, a condition where too little blood flows to the organs in the body, especially the heart. Because this drug is thought to expand the arteries, it helps to increase the blood flow as well as increase the flow of oxygen throughout the body.
Meldonium also appears to have neuroprotective properties particularly relevant to the mitochondria.  At one point I thought this was just the Latvian researchers clutching at straws trying to push their drug as a panacea.
Rather, I think perhaps its core action may include making the mitochondria work a little better, by increasing complex 1. This might also increase stamina and it should also improve cognition in some.

Mildronate has a very similar structure to carnitine.






 Previously, we have found that mildronate [3-(2,2,2-trimethylhydrazinium) propionate dihydrate], a small molecule with charged nitrogen and oxygen atoms, protects mitochondrial metabolism that is altered by inhibitors of complex I and has neuroprotective effects in an azidothymidine-neurotoxicity mouse model


The aim of this study was to investigate: (1) whether mildronate may protect mitochondria from AZT-induced toxicity; and (2) which is the most critical target in mitochondrial processes that is responsible for mildronate's regulatory action. The results showed that mildronate protected mitochondria from AZT-induced damage predominantly at the level of complex I, mainly by reducing hydrogen peroxide generation. Significant protection of AZT-caused inhibition of uncoupled respiration, ADP to oxygen ratio, and transmembrane potential were also observed. Mildronate per se had no effect on the bioenergetics, oxidative stress, or permeability transition of rat liver mitochondria. Since mitochondrial complex I is the first enzyme of the respiratory electron transport chain and its damage is considered to be responsible for different mitochondrial diseases, we may account for mildronate's effectiveness in the prevention of pathologies associated with mitochondrial dysfunctions.




Previously we demonstrated that mildronate [3-(2,2,2-trimethylhydrazinium) propionate dihydrate], a representative of the aza-butyrobetaine class of compounds, protects mitochondrial metabolism under conditions such as ischemia. Mildronate also acted as a neuroprotective agent in an azidothymidine-induced mouse model of neurotoxicity, as well as in a rat model of Parkinson's disease. These observations suggest that mildronate may stimulate processes involved in cell survival and change expression of proteins involved in neurogenic processes. The present study investigated the influence of mildronate on learning and memory in the passive avoidance response (PAR) test and the active conditioned avoidance response (CAR) test in rats. The CAR test employed also bromodeoxyuridine (BrdU)-treated animals. Hippocampal cell BrdU incorporation was then immunohistochemically assessed in BrdU-treated, CAR-trained rats to identify proliferating cells. In addition, the expression of hippocampal proteins which could serve as memory enhancement biomarkers was evaluated and compared to non-trained animals' data. These biomarkers included glutamic acid decarboxylase 65/67 (GAD65/67), acetylcholine esterase (AChE), growth-associated protein-43 (GAP-43) and the transcription factor c-jun/activator protein-1 (AP-1). The results showed that mildronate enhanced learning/memory formation that coincided with the proliferation of neural progenitor cells, changing/regulating of the expression of biomarker proteins which are involved in the activation of glutamatergic and cholinergic pathways, transcription factors and adhesion molecule.

The data from our study suggest that mildronate may be useful as a possible cognitive enhancer for the treatment of patients with neurodegenerative diseases with dementia.



Mildronate Dosage
Interestingly, the neuroprotective dose of Mildronate is much lower than the usual dose.




Summary. This review for the first time summarizes the data obtained in the neuropharmacological studies of mildronate, a drug previously known as a cardioprotective agent. In different animal models of neurotoxicity and neurodegenerative diseases, we demonstrated its neuroprotecting activity. By the use of immunohistochemical methods and Western blot analysis, as well as some selected behavioral tests, the new mechanisms of mildronate have been demonstrated: a regulatory effect on mitochondrial processes and on the expression of nerve cell proteins, which are involved in cell survival, functioning, and inflammation processes. Particular attention is paid to the capability of mildronate to stimulate learning and memory and to the expression of neuronal proteins involved in synaptic plasticity and adult neurogenesis. These properties can be useful in neurological practice to protect and treat neurological disorders, particularly those associated with neurodegeneration and a decline in cognitive functions.

Concluding Remarks

The obtained data give a new insight into the influence of mildronate on the central nervous system.

This drug shows beneficial effects in the regulation of cell processes necessary for cell integrity and survival, particularly by targeting mitochondria and by stabilizing the expression of proteins involved in neuroinflammation and neuroregeneration. These properties can be useful in neurological practice to protect and treat neurological disorders, such as Parkinson’s disease, diabetic neuropathies, and ischemic stroke. Moreover, because mildronate improves learning and memory, one may suggest mildronate as a multitargeted neuroprotective/ neurorestorative drug with its therapeutic utility as a memory enhancer in cognitive impairment conditions, such as neurodegenerative diseases, schizophrenia, and other pathologies associated with a decline in awareness.

The present review summarizes our previously obtained data which demonstrated the influence of mildronate on mitochondrial processes and the expression of nerve cell proteins involved in the essential pathways for cell survival and functioning. Besides, the effectiveness of mildronate at much lower doses of 20 and 50 mg/kg in comparison with the traditionally recommended doses typical for cardioprotection (100 and 200 mg/kg) has been demonstrated.



Bypass the need for Complex 1 by ketosis?

Almost all the research on mitochondrial disease assumes that you want to convert glucose to ATP.
If a person has an inability to produce enough complex 1 they might be better off switching from glycolysis (glucose as fuel) to ketosis (ketones from fat as fuel).
There are posts in this blog describing the ketogenic diet, which has been widely used for decades to treat epilepsy.

Ketosis is a metabolic state in which some of the body's energy supply comes from ketone bodies in the blood, in contrast to a state of glycolysis in which blood glucose provides most of the energy.

Ketosis is a nutritional process characterized by serum concentrations of ketone bodies over 0.5 mM, with low and stable levels of insulin and blood glucose. It is almost always generalized with hyperketonemia, that is, an elevated level of ketone bodies in the blood throughout the body. Ketone bodies are formed by ketogenesis when liver glycogen stores are depleted (or from metabolising medium-chain triglycerides). The main ketone bodies used for energy are acetoacetate and β-hydroxybutyrate, and the levels of ketone bodies are regulated mainly by insulin and glucagon. Most cells in the body can use both glucose and ketone bodies for fuel, and during ketosis, free fatty acids and glucose synthesis (gluconeogenesis) fuel the remainder.

As is often the case, opinion is mixed on the ketogenic diet and mitochondrial disorders. It seems to make some people better and have no effect on others.  This is likely because they do not have precisely the same mitochondrial disorder.



2.6. Dietary manipulations

Several approaches based on dietary measures have been attempted, with controversial results. Ketogenic diet (KD), i.e. a high-fat, low-carbohydrate diet, has been proposed to stimulate mitochondrial beta-oxidation, and provide ketones, which constitute an alternative energy source for the brain, heart and skeletal muscle. Ketone bodies are metabolized to acetyl-CoA, which enters the Krebs cycle and is oxidized to feed the RC and ultimately generate ATP via OXPHOS. This pathway partially bypasses complex I via increased synthesis of succinate, which donates electrons to the respiratory chain via complex II. Increased ketone bodies have also been associated with increased expression of OXPHOS genes, possibly via a starvation-like response [80]. Starvation is a stressing condition to the cell, which results in activation of many transcription factors and cofactors (including SIRT1, AMPK, and PGC-1α) that ultimately increase mitochondrial biogenesis [80]. KD reduced the mutation load of a heteroplasmic mtDNA deletion in a cybrid cell line from a Kearns–Sayre syndrome patient [81], was shown to increase the expression levels of uncoupling proteins and mitochondrial biogenesis in the hippocampus of mice and rats [82] and [83], and increased mitochondrial GSH levels [84] in rat brain. These phenomena could contribute to explain the anticonvulsant effects of KD. In a preclinical trial on the deletor mouse, KD slowed the progression of mitochondrial myopathy [85]. However, other reports showed that KD can have the opposite effect, and worsens the mitochondrial defect invivo, for instance in the Mterf2−/− [86], or the Mpv17–/−mouse models [87].

Similar to KD, a high fat diet (HFD) was shown to have a protective effect on fibroblasts with complex I deficiency and be effective in delaying the neurological symptoms of the Harlequin mouse, a model of partial complex I defect associated with a homozygous mutation of AIFM1, encoding the mitochondrial apoptosis inducing factor [88].

Similar results could in principle be achieved using other compounds that release succinate in mitochondria. An example is triheptaoin, an anaplerotic compound inducing a rapid increase of plasmatic C4- and C5-ketone bodies, the latter being a precursor of propionyl-CoA, which is then converted into succinyl-CoA. Treatment with triheptaoin has been reported to dramatically improve cardiomyopathy in patients with VLCAD deficiency and myopathic symptoms in CPT2 deficiency patients [89] and [90]. 



Ketogenic diet

The ketogenic diet is a high-fat diet that effectively treats some forms of medically refractory epilepsy [7,8, Class I]. Recent animal research has suggested that the ketogenic diet may be beneficial in optimizing mitochondrial function [9, Class III].
Because many mitochondrial disease patients have secondary fatty acid oxidation disorders, there are limited data on use and safety of the ketogenic diet in patients with these conditions. Only a single report has looked at the lack of efficacy of the ketogenic diet in children with electron transport chain defects and intractable seizures [10, Class IV].
The ketogenic diet is the standard of care for pyruvate dehydrogenase deficiency, but it is contraindicated in patients with known fatty acid oxidation disorders and pyruvate carboxylase deficiency.

Experimental Therapies

Highlights


o   At present there is no effective cure for mitochondrial diseases.

o   Generalist and tailored therapies are emerging at the pre-clinical level.

o   Some therapies are effective in disease models and ready for translation to patients.

o   Other approaches warrant more work at the pre-clinical level.


Conclusion
Some people’s autism does indeed appear to have been solely caused by the lack of mitochondrial enzymes.  These dysfunctions can be inherited or acquired.

As Dr Kelley suggests, a baby might be born with a 50% reduction in complex 1 and develop normally. Following a viral infection, or other insult, before the brain has substantially matured a further reduction in complex 1 occurs and this tips the balance to where mitochondria cannot function sufficiently. Siblings may have exactly the same biochemical markers, but continue normal development because they avoided the damaging insult that triggered regression at a critical point in the brain’s maturation.
The data does point to mitochondrial dysfunction being present beyond just those with regressive autism, so a little extra complex 1 may be in order for them too.

Of the five enzyme complexes, complex 1 appears to be the most important because it is “rate limiting”, meaning it is usually the enzyme with the least unused capacity.  It becomes the bottleneck in the energy production chain. Many other diseases and aging feature a decline in complex 1 which may account for some people’s loss of cognitive function.
Is mildronate a carnitine analog with better bioavailability? Are its cognitive enhancing effects due to increased blood flow, improved complex 1 availability or perhaps both?  We can only wait till the Latvians do some experiments on schizophrenia and autism.  The good news is that the dose at which the mitochondrial effects occur is five times less than the anti-ischemia dose.

I can see that the dose for athletes is twice the dose for ischemia. So it would seem that tennis players who have used mildronate for ten years, at ten times the mitochondrial dose, might provide some useful safety information.



As you can see from the packaging, the drug must be popular with cyclists too.


Suggested further reading, or indeed re-reading:



Richard I. Kelley, MD, PhD
Division of Metabolism, Kennedy Krieger Institute Department of Pediatrics, Johns Hopkins Medical Institutions